1y=c(c为常数)
y'=0
2y=x^n
y'=nx^(n-1)
3y=a^x
y'=a^xlna
y=e^x
y'=e^x
4y=logax
y'=logae/x
y=lnx
y'=1/x
5y=sinx
y'=cosx
6y=cosx
y'=-sinx
7y=tanx
y'=1/cos^2x
8y=cotx
y'=-1/sin^2x
9y=arcsinx
y'=1/√1-x^2
10y=arccosx
y'=-1/√1-x^2
11y=arctanx
y'=1/1+x^2
12y=arccotx
y'=-1/1+x^2
a是一个常数,对数的真数,比如ln5
5就是真数
log对数
lognm
这里的n是指底数,m是指真数,当底数为10时,简写成lgm
当底数为e(e
=
2718281828459
是一个常数
数学中成为超越数
经常要用到)时,简写成lnm
(如上面给你举的那个例子ln5)
sin,cos,tan,sec,cot,csc分别为三角函数
分别表示正弦、余弦、正切、正割、余切、余割。
正弦余弦是一对
正切余切是一对
正割余割是一对
这六个是最基本的三角函数
arc是指的反三角函数
比如反正弦Sin30°=05
则arcsin05=30°(角度制)=π/6(弧度制)
反正切
反余弦
反余切等等都是同一道理
微分公式如图所示,
公式描述:公式中f'(x)为f(x)的导数。
微分公式的定义
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不随Δx改变的常量,但A可以随x改变),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
扩展资料:
微分公式的推导
设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) − f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。 AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。
微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。得出: 当△x→0时,△y≈dy。 导数的记号为:(dy)/(dx)=f′(X),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(X)dX。
(x^n)'=nx^n-1。(x^n)'=nx^n-1是一个公式。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
扩展资料:
常用导数公式:
1y=c(c为常数) y'=0
2y=x^n y'=nx^(n-1)
3y=a^x y'=a^xlna,y=e^x y'=e^x
4y=logax y'=logae/x,y=lnx y'=1/x
5y=sinx y'=cosx
6y=cosx y'=-sinx
7y=tanx y'=1/cos^2x
8y=cotx y'=-1/sin^2x
9y=arcsinx y'=1/√1-x^2
10y=arccosx y'=-1/√1-x^2
11y=arctanx y'=1/1+x^2
12y=arccotx y'=-1/1+x^2
导数是微积分中的重要基础概念,导数实质上就是一个求极限的过程,常见的导数公式有:1、y=c(c为常数)y'=0;2、y=x^ny'=nx^(n-1);3、y=a^xy'=a^xlna,y=e^xy'=e^x;4、y=logaxy'=logae/x,y=lnxy'=1/x。
导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
一、什么是导数?
导数就是“平均变化率“△y/△x”,当△x→0时的极限值”。可导函数y=f(x)在点(a,b)处的导数值为f'(a)。
二、基本初等函数的导数公式
高中数学里基本初等函数的导数公式里涉及到的函数类型有:常函数、幂函数、正弦函数、余弦函数、指数函数、对数函数。它们的导数公式如下图所示:
高中数学基本初等函数导数公式
三、导数加、减、乘、除四则运算法则
导数加、减、乘、除四则运算法则公式如下图所示:
1、加减法运算法则
导数的加、减法运算法则公式
2、乘除法运算法则
导数的乘、除法运算法则公式
注分母g(x)≠0
为了便于记忆,我们可以把导数的四则运算法则简化为如下图所示的、比较简洁的四则运算公式。
简化后的导数四则运算法则公式
注分母v≠0
四、复合函数求导公式(“链式法则”)
求一个基本初等函数的导数,只要代入“基本初等函数的导数公式”即可。对于基本初等函数之外的函数如“y=sin(2x)”的导数,则要用到复合函数求导法则(又称“链式法则”)。其内容如下。
(1)若一个函数y=f(g(x)),则它的导数与函数y=f(u),u=g(x)的导数间的关系如下图所示。
复合函数导数公式
(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。
例求y=sin(2x)的导数。
解:y=sin(2x)可看成y=sinu与u=2x的复合函数。
因为(sinu)'=cosu,(2x)'=2,
所以,[sin(2x)]'=(sinu)'×(2x)'
=cosu×2=2cosu=2cos(2x)。
五、可导函数在一点处的导数值的物理意义和几何意义
(1)物理意义:可导函数在该点处的瞬时变化率。
(2)几何意义:可导函数在该点处的切线斜率值。
注一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)'=k。
导数基本公式如下:
1y=c(c为常数) y'=0
2y=x^n y'=nx^(n-1)
3y=a^x y'=a^xlna
4y=logax y'=logae/x
5y=sinx y'=cosx
6y=cosx y'=-sinx
7y=tanx y'=1/cos^2x
8y=cotx y'=-1/sin^2x
9y=e^x y'=e^x
10y=lnx y'=1/x
导数的基本性质:
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
(3)可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)