常见三角函数的导数

常见三角函数的导数,第1张

三角函数主要有

正弦,余弦,正切,余切,正割,余割

这六种函数,作为最基本的导数,再在其上面做变换,形成相关的复合函数,其对应的导数分别如下:

常用的求导公式大全:

1、(sinx)'=cosx,即正弦的导数是余弦。

2、(cosx)'=-sinx,即余弦的导数是正弦的相反数。

3、(tanx)'=(secx)^2,即正切的导数是正割的平方。

4、(cotx)'=-(cscx)^2,即余切的导数是余割平方的相反数。

5、(secx)'=secxtanx,即正割的导数是正割和正切的积。

6、(cscx)'=-cscxcotx,即余割的导数是余割和余切的积的相反数。

7、(arctanx)'=1/(1+x^2)。

8、(arccotx)'=-1/(1+x^2)。

9、(fg)'=f'g+fg',即积的导数等于各因式的导数与其它函数的积,再求和。

10、(f/g)'=(f'g-fg')/g^2,即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。

11、(f^(-1)(x))'=1/f'(y),即反函数的导数是原函数导数的倒数,注意变量的转换。

求导注意事项

对于函数求导一般要遵循先化简,再求导的原则,求导时不但要重视求导法则的运用,还要特别注意求导法则对求导的制约作用,在化简时,首先注意变换的等价性,避免不必要的运算错误。

需要记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。

导数的基本公式:常数c的导数等于零。X的n次方导数是n乘以x^n-1次方。

3sinx的导数等于cosx。

cosx的导数等于负的sinx。

e的x方的导数等于e的x次方。

a^x的导数等于a的x次方乘以lna。

lnx的导数等于1/x。

loga为底x的对数的导数等于1/(xlna)。

导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

基本的导数公式:

1、C'=0(C为常数)。

2、(Xn)'=nX(n-1)(n∈R)。

3、(sinX)'=cosX。

4、(cosX)'=-sinX。

5、(aX)'=aXIna(ln为自然对数)。

6、(logaX)'=(1/X)logae=1/(Xlna)(a>0,且a≠1)。

7、(tanX)'=1/(cosX)2=(secX)2。

8、(cotX)'=-1/(sinX)2=-(cscX)2。

9、(secX)'=tanX secX。

导数,也叫导函数值。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。接下来我就给大家分享常见的导数公式,一起看一下具体内容,供参考!

三角函数的导数公式

正弦函数:(sinx)'=cosx

余弦函数:(cosx)'=-sinx

正切函数:(tanx)'=sec²x

余切函数:(cotx)'=-csc²x

正割函数:(secx)'=tanx·secx

余割函数:(cscx)'=-cotx·cscx

反三角函数的导数公式

反正弦函数:(arcsinx)'=1/√(1-x^2)

反余弦函数:(arccosx)'=-1/√(1-x^2)

反正切函数:(arctanx)'=1/(1+x^2)

反余切函数:(arccotx)'=-1/(1+x^2)

其他函数导数公式

常函数:y=c(c为常数) y'=0

幂函数:y=xn y'=nx^(n-1)

指数函数:①y=ax y'=axlna ②y=ex y'=ex

对数函数:①y=logax y'=1/xlna ②y=lnx y'=1/x

什么是导数

设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数。

如下图所示。

常用导数公式:

1、y=c(c为常数) y'=0

2、y=x^n y'=nx^(n-1)

3、y=a^x y'=a^xlna,y=e^x y'=e^x

4、y=logax y'=logae/x,y=lnx y'=1/x

5、y=sinx y'=cosx

6、y=cosx y'=-sinx

7、y=tanx y'=1/cos^2x

8、y=cotx y'=-1/sin^2x

9、y=arcsinx y'=1/√1-x^2

导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

导数的基本公式:常数c的导数等于零。X的n次方导数是n乘以x^n-1次方。

3sinx的导数等于cosx。

cosx的导数等于负的sinx。

e的x方的导数等于e的x次方。

a^x的导数等于a的x次方乘以lna。

lnx的导数等于1/x。

loga为底x的对数的导数等于1/(xlna)。

导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

基本的导数公式:

1、C'=0(C为常数)。

2、(Xn)'=nX(n-1)(n∈R)。

3、(sinX)'=cosX。

4、(cosX)'=-sinX。

5、(aX)'=aXIna(ln为自然对数)。

6、(logaX)'=(1/X)logae=1/(Xlna)(a>0,且a≠1)。

7、(tanX)'=1/(cosX)2=(secX)2。

8、(cotX)'=-1/(sinX)2=-(cscX)2。

9、(secX)'=tanX secX。

基本导数公式(y:原函数;y':导函数):

1、y=c,y'=0(c为常数)。

2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)

3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。

4、y=logax,y'=1/(xlna)(a>0且a≠1);y=lnx,y'=1/x。

5、y=sinx,y'=cosx。

6、y=cosx,y'=-sinx。

7、y=tanx,y'=(secx)^2=1/(cosx)^2。

8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。

9、y=arcsinx,y'=1/√(1-x^2)。

10、y=arccosx,y'=-1/√(1-x^2)。

11、y=arctanx,y'=1/(1+x^2)。

12、y=arccotx,y'=-1/(1+x^2)。

13、y=shx,y'=ch x。

14、y=chx,y'=sh x。

15、y=thx,y'=1/(chx)^2。

16、y=arshx,y'=1/√(1+x^2)。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/557071.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-03
下一篇2023-07-03

发表评论

登录后才能评论

评论列表(0条)

    保存