求导数的公式

求导数的公式,第1张

一、什么是导数

导数就是“平均变化率“△y/△x”,当△x→0时的极限值”。可导函数y=f(x)在点(a,b)处的导数值为f'(a)。

二、基本初等函数的导数公式

高中数学里基本初等函数的导数公式里涉及到的函数类型有:常函数、幂函数、正弦函数、余弦函数、指数函数、对数函数。它们的导数公式如下图所示:

高中数学基本初等函数导数公式

三、导数加、减、乘、除四则运算法则

导数加、减、乘、除四则运算法则公式如下图所示:

1、加减法运算法则

导数的加、减法运算法则公式

2、乘除法运算法则

导数的乘、除法运算法则公式

注分母g(x)≠0

为了便于记忆,我们可以把导数的四则运算法则简化为如下图所示的、比较简洁的四则运算公式。

简化后的导数四则运算法则公式

注分母v≠0

四、复合函数求导公式(“链式法则”)

求一个基本初等函数的导数,只要代入“基本初等函数的导数公式”即可。对于基本初等函数之外的函数如“y=sin(2x)”的导数,则要用到复合函数求导法则(又称“链式法则”)。其内容如下。

(1)若一个函数y=f(g(x)),则它的导数与函数y=f(u),u=g(x)的导数间的关系如下图所示。

复合函数导数公式

(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。

例求y=sin(2x)的导数。

解:y=sin(2x)可看成y=sinu与u=2x的复合函数。

因为(sinu)'=cosu,(2x)'=2,

所以,[sin(2x)]'=(sinu)'×(2x)'

=cosu×2=2cosu=2cos(2x)。

五、可导函数在一点处的导数值的物理意义和几何意义

(1)物理意义:可导函数在该点处的瞬时变化率。

(2)几何意义:可导函数在该点处的切线斜率值。

注一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)'=k。

导数公式

1y=c(c为常数) y'=0

2y=x^n y'=nx^(n-1)

3y=a^x y'=a^xlna

y=e^x y'=e^x

4y=logax y'=logae/x

y=lnx y'=1/x

5y=sinx y'=cosx

6y=cosx y'=-sinx

7y=tanx y'=1/cos^2x

8y=cotx y'=-1/sin^2x

运算法则

减法法则:(f(x)-g(x))'=f'(x)-g'(x)

加法法则:(f(x)+g(x))'=f'(x)+g'(x)

乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2

求导公式表如下:

1、(sinx)'=cosx,即正弦的导数是余弦。

2、(cosx)'=-sinx,即余弦的导数是正弦的相反数。

3、(tanx)'=(secx)^2,即正切的导数是正割的平方。

4、(cotx)'=-(cscx)^2,即余切的导数是余割平方的相反数。

5、(secx)'=secxtanx,即正割的导数是正割和正切的积。

6、(cscx)'=-cscxcotx,即余割的导数是余割和余切的积的相反数。

7、(arctanx)'=1/(1+x^2)。

8、(arccotx)'=-1/(1+x^2)。

9、(fg)'=f'g+fg',即积的导数等于各因式的导数与其它函数的积,再求和。

10、(f/g)'=(f'g-fg')/g^2,即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。

11、(f^(-1)(x))'=1/f'(y),即反函数的导数是原函数导数的倒数,注意变量的转换。

求导注意事项

对于函数求导一般要遵循先化简,再求导的原则,求导时不但要重视求导法则的运用,还要特别注意求导法则对求导的制约作用,在化简时,首先注意变换的等价性,避免不必要的运算错误。

需要记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。

1y=c(c为常数)

y'=0

2y=x^n

y'=nx^(n-1)

3y=a^x

y'=a^xlna

y=e^x

y'=e^x

4y=logax

y'=logae/x

y=lnx

y'=1/x

5y=sinx

y'=cosx

6y=cosx

y'=-sinx

7y=tanx

y'=1/cos^2x

8y=cotx

y'=-1/sin^2x

9y=arcsinx

y'=1/√1-x^2

10y=arccosx

y'=-1/√1-x^2

11y=arctanx

y'=1/1+x^2

12y=arccotx

y'=-1/1+x^2

a是一个常数,对数的真数,比如ln5

5就是真数

log对数

lognm

这里的n是指底数,m是指真数,当底数为10时,简写成lgm

当底数为e(e

=

2718281828459

是一个常数

数学中成为超越数

经常要用到)时,简写成lnm

(如上面给你举的那个例子ln5)

sin,cos,tan,sec,cot,csc分别为三角函数

分别表示正弦、余弦、正切、正割、余切、余割。

正弦余弦是一对

正切余切是一对

正割余割是一对

这六个是最基本的三角函数

arc是指的反三角函数

比如反正弦Sin30°=05

则arcsin05=30°(角度制)=π/6(弧度制)

反正切

反余弦

反余切等等都是同一道理

一、什么是导数?

导数就是“平均变化率“△y/△x”,当△x→0时的极限值”。可导函数y=f(x)在点(a,b)处的导数值为f'(a)。

二、基本初等函数的导数公式

高中数学里基本初等函数的导数公式里涉及到的函数类型有:常函数、幂函数、正弦函数、余弦函数、指数函数、对数函数。它们的导数公式如下图所示:

高中数学基本初等函数导数公式

三、导数加、减、乘、除四则运算法则

导数加、减、乘、除四则运算法则公式如下图所示:

1、加减法运算法则

导数的加、减法运算法则公式

2、乘除法运算法则

导数的乘、除法运算法则公式

注分母g(x)≠0

为了便于记忆,我们可以把导数的四则运算法则简化为如下图所示的、比较简洁的四则运算公式。

简化后的导数四则运算法则公式

注分母v≠0

四、复合函数求导公式(“链式法则”)

求一个基本初等函数的导数,只要代入“基本初等函数的导数公式”即可。对于基本初等函数之外的函数如“y=sin(2x)”的导数,则要用到复合函数求导法则(又称“链式法则”)。其内容如下。

(1)若一个函数y=f(g(x)),则它的导数与函数y=f(u),u=g(x)的导数间的关系如下图所示。

复合函数导数公式

(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。

例求y=sin(2x)的导数。

解:y=sin(2x)可看成y=sinu与u=2x的复合函数。

因为(sinu)'=cosu,(2x)'=2,

所以,[sin(2x)]'=(sinu)'×(2x)'

=cosu×2=2cosu=2cos(2x)。

五、可导函数在一点处的导数值的物理意义和几何意义

(1)物理意义:可导函数在该点处的瞬时变化率。

(2)几何意义:可导函数在该点处的切线斜率值。

注一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)'=k。

基本初等函数导数公式主要有以下

y=f(x)=c (c为常数),则f'(x)=0

f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)

f(x)=sinx f'(x)=cosx

f(x)=cosx f'(x)=-sinx

f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)

f(x)=e^x f'(x)=e^x

f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)

f(x)=lnx f'(x)=1/x (x>0)

f(x)=tanx f'(x)=1/cos^2 x

f(x)=cotx f'(x)=- 1/sin^2 x

导数运算法则如下

(f(x)+/-g(x))'=f'(x)+/- g'(x)

(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2

扩展资料:

如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。

若将一点扩展成函数f(x)在其定义域包含的某开区间I内每一个点,那么函数f(x)在开区间内可导,这时对于内每一个确定的值,都对应着f(x)的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数f(x)的导函数,记作:y'或者f′(x)。

-导函数

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/lianai/317294.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-22
下一篇2023-06-22

发表评论

登录后才能评论

评论列表(0条)

    保存