要初三所有数学的定理和概念

要初三所有数学的定理和概念,第1张

初中几何公式、定理、推论总结140条

1过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等

24 推论 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理 有三边对应相等的两个三角形全等

26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109定理 不在同一直线上的三个点确定一条直线

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点

145扇形面积公式:S扇形=n∏R/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

老兄,俺只有关于几何的,代数自己再找找吧。 w yehui as diahskdlhsakld

初高中的数学公式定理大集中(仅供参考)

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 �

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d wc呁/S∕

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r �

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r) �

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理 相交两圆的连心线垂直平分两圆的公弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长扑愎�剑篖=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2) 

a^3-b^3=(a-b(a^2+ab+b^2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理

判别式

b^2-4ac=0 注:方程有两个相等的实根

b^2-4ac>0 注:方程有两个不等的实根 �

b^2-4ac<0 注:方程没有实根,有轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA �

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) �

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) �

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B) )

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标

圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h

正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2

圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl

弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr

锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/3pir2h �

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=sh 圆柱体 V=pir2h

希望对你有帮助!!!

一、线与角

1、两点之间,线段最短

2、经过两点有一条直线,并且只有一条直线

3、对顶角相等;同角的余角(或补角)相等;等角的余角(或补角)相等

4、经过直线外或直线上一点,有且只有一条直线与已知直线垂直

5、(1)经过已知直线外一点,有且只有一条直线与已知直线平行

(2)如果两条直线都和第三条直线平行,那么这两条直线也平行

6、平行线的判定:

(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行

7、平行线的特征:

(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补

8、角平分线的性质:角平分线上的点到这个角的两边的距离相等

角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上

9、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等

线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上

二、三角形、多边形

10、三角形中的有关公理、定理:

(1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和②三角形的一个外角大于任何一个与它不相邻的内角③三角形的外角和等于360°

(2)三角形内角和定理:三角形的内角和等于180°

(3)三角形的任何两边的和大于第三边

(4)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半

11、多边形中的有关公理、定理:

(1)多边形的内角和定理:n边形的内角和等于( n-2)×180°

(2)多边形的外角和定理:任意多边形的外角和都为360°

(3)欧拉公式:顶点数 + 面数-棱数=2

12、如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分

13、等腰三角形中的有关公理、定理:

(1)等腰三角形的两个底角相等.(简写成“等边对等角”)

(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)

(3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”

(4)等边三角形的各个内角都相等,并且每一个内角都等于60°

(5)三边都相等的三角形叫做等边三角形;有一个角等于600的等腰三角形是等边三角形;

三个角都相等的三角形是等边三角形

14、直角三角形的有关公理、定理:

(1)直角三角形的两个锐角互余

(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方

(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形

(4)直角三角形斜边上的中线等于斜边的一半

(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

三、特殊四边形

15、平行四边形的性质:

(1)平行四边形的对边平行且相等(2)平行四边形的对角相等(3)平行四边形的对角线互相平分

16、平行四边形的判定:

(1)两组对边分别平行的四边形是平行四边形

(2)一组对边平行且相等的四边形是平行四边形

(3)两组对边分别相等的四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

17、平行线之间的距离处处相等

18、矩形的性质:

(1)矩形的四个角都是直角(2)矩形的对角线相等且互相平分

19、矩形的判定:(1)有一个角是直角的平行四边形是矩形(2)有三个角是直角的四边形是矩形(3)对角线相等的平行四边形是矩形

20、菱形的性质:

(1)菱形的四条边都相等(2)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角

21、菱形的判定:(1)有一组邻边相等的平行四边形是菱形(2)四条边相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形

22、正方形的性质:

(1)正方形的四个角都是直角(2)正方形的四条边都相等

(3)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角

23、正方形的判定:

(1)有一个角是直角的菱形是正方形

(2)有一组邻边相等的矩形是正方形

(3)两条对角线垂直的矩形是正方形

(4)两条对角线相等的菱形是正方形

梯形:一组对边平行而另一组对边不平行的四边形是梯形

24、等腰梯形的判定:

(1)同一条底边上的两个内角相等的梯形是等腰梯形

(2)两条对角线相等的梯形是等腰梯形

25、等腰梯形的性质:

(1)等腰梯形的同一条底边上的两个内角相等

(2)等腰梯形的两条对角线相等

26、梯形的中位线平行于梯形的两底边,并且等于两底和的一半

四、相似形与全等形

27、相似多边形的性质:

(1)相似多边形的对应边成比例(2)相似多边形的对应角相等

(3)相似多边形周长的比等于相似比

(4)相似多边形的面积比等于相似比的平方

(5)相似三角形的对应角相等,对应边成比例;相似三角形对应高的比,对应中线的比,都等于相似比;相似三角形周长的比等于相似比;相似三角形的面积比等于相似比的平方

28、相似三角形的判定:

(1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似

(2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似

(3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似

29、全等多边形的对应边、对应角分别相等

30、全等三角形的判定:

(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(SSS)

(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等(SAS)

(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(ASA)

(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(AAS)

(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等(HL)

五、圆

31、(1)在同圆或等圆中,如果两个圆心角,两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;(2)半圆或直径所对的圆周角都相等,都等于90°(直角);

(3)90°的圆周角所对的弦是圆的直径

32、在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半; 相等的圆周角所对的弧相等

33、不在同一条直线上的三个点确定一个圆

34、(1)经过半径的外端且垂直于这条半径的直线是圆的切线(2)圆的切线垂直于过切点的半径

35、从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角

36、圆的内接四边形对角互补,外角等于内对角

37、垂径定理及推论:垂直于弦的直径平分这条弦,并且平分所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

六、变换

37、轴对称:(1)关于某条直线对称的两个图形是全等形;如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(2)两个图形关于某直线对称,如果它们的对应线段(或延长线)相交,交点一定在对称轴上;(3)两个图形关于某直线对称,如果它们的对应线段(或延长线)相交,交点一定在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

38、平移:(1)平移不改变图形的形状和大小(即平移前后的两个图形全等);(2)对应线段平行且相等(或在同一直线上),对应角相等;(3)经过平移,两个对应点所连的线段平行(或在同一直线上)且相等

39、旋转:(1)旋转不改变图形的形状和大小(即旋转前后的两个图形全等)(2)任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角)(3)经过旋转,对应点到旋转中心的距离相等

40、中心对称:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点连线都经过对称中心;(3)如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

41、位似:(1)如果两个图形不仅相似,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比;(2)位似图形上的任意一对对应点到位似中心的距离之比等于位似比

(http://wwwszxcwtzxcom/news/showaspxid=1092&cid=28)

初中数学几何定理集锦

1。同角(或等角)的余角相等。

3。对顶角相等。

5。三角形的一个外角等于和它不相邻的两个内角之和。

6。在同一平面内垂直于同一条直线的两条直线是平行线。

7。同位角相等,两直线平行。

12。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。

16。直角三角形中,斜边上的中线等于斜边的一半。

19。在角平分线上的点到这个角的两边距离相等。及其逆定理。

21。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。

22。一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。

24。有三个角是直角的四边形、对角线相等的平行四边形是矩形。

25。菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。

27。正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。

34。在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。

36。垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

43。直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。

46。相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。

37.圆内接四边形的对角互补,并且任何一个外角等于它的内对角。

47。切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。

48。切线的性质定理①经过圆心垂直于切线的直线必经过切点。 ②圆的切线垂直于经过切点的半径。 ③经过切点垂直于切线的直线必经过圆心。

49。切线长定理 从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。

50。弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。

51。相交弦定理 ; 切割线定理 ; 割线定理

1、字母表达形式:

运算定律共有五个:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律,要求在理解的基础上掌握,并能灵活运用。

运算性质指:一个数加上两个数的差;一个数减去两个数的和;一个数减去两个数的差;一个数乘以两个数的商;一个数除以两个数的积;一个数除以两个数的商;几个数的和除以一个数等。这部分内容只是用于简便运算。

运算法则包括:整数四则运算法则、小数四则运算法则、分数四则运算法则,要求在理解的基础上掌握法则,并能运用法则熟练地进行计算。

公式在小学数学的运用中,重点是两方面:

1运算定律或性质用字母公式表示

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:a(b+c)=ab+ac

2几何形体的周长、面积、体积计算公式

长方形周长:C=2(a+b)

正方形周长:C=4a

圆的周长:C=2πr,或(πd)

长方形面积:S=ab

正方形面积:S=a2

平行四边形面积:S=ah

圆形面积:S=πr2

长方体体积:V=abc表面积S=2(ab+ac+bc)

正方体体积:V=a3表面积S=6a2

圆柱体体积:V=πr2h表面积S=2πrh+2πr2

要使学生正确理解和掌握基础知识,教师要认真学习大纲,认真钻研教材,正确理解大纲所要求学生掌握基础知识的深度和广度,并要注重在使学生理解与掌握知识的同时,培养学生的能力,能力发展了,也就更促进对知识的理解和掌握,它们之间是互相促进,密不可分的。

行程通常可以分为这样几类:

相遇问题:速度和×相遇时间=相遇路程;

追及问题:速度差×追及时间=路程差;

流水问题:关键是抓住水速对追及和相遇的时间不产生影响;

顺水速度=船速+水速 逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2

(也就是顺水速度、逆水速度、船速、水速4个量中只要有2个就可求另外2个)

环形行程:抓住往返过程中不便的关系

比例应用:运用比例知识解决复杂的行程问题经常考,而且要考都不简单。

复杂行程:包括多次相遇、火车过桥,二维行程等。

2、定义定理公式

三角形的面积=底×高÷2。 公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a×a

长方形的面积=长×宽 公式 S= a×b

平行四边形的面积=底×高 公式 S= a×h

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的体积=长×宽×高 公式:V=abh

长方体(或正方体)的体积=底面积×高 公式:V=abh

正方体的体积=棱长×棱长×棱长 公式:V=aaa

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

单位换算

(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米

(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米

(4)1吨=1000千克 1千克= 1000克= 1公斤 = 1市斤

(5)1公顷=10000平方米 1亩=666666平方米

(6)1升=1立方分米=1000毫升 1毫升=1立方厘米

3、数量关系计算公式方面

1.单价×数量=总价

2.单产量×数量=总产量

3.速度×时间=路程

4.工效×时间=工作总量

(^__^) 嘻嘻……

费马大定理:

当整数n > 2时,关于x, y, z的不定方程

x^n + y^n = z^n

的整数解都是平凡解,即

当n是偶数时:(0,±m,±m)或(±m,0,±m)

当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0)

这个定理,本来又称费马猜想,由17世纪法国数学家费马提出。费马宣称他已找到一个绝妙证明。但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

编辑本段研究历史

1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi Hanc marginis exiguitas non caperet")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。

对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。

1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。

1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得an + bn = cn。

1986年,Gerhard Frey 提出了“ ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。

1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。

怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。

1:欧拉证明了n=3的情形,用的是唯一因子分解定理。

2:费马自己证明了n=4的情形。

3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。

4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧秒工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。

5:库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。

6:勒贝格提交了一个证明,但因有漏洞,被否决。

7:希尔伯特也研究过,但没进展。

8:1983年,德国数学家法尔廷斯证明了一条重要的猜想——莫代尔猜想x的平方+y的平方=1这样的方程至多有有限个有理数解,他由于这一贡献,获得了菲尔兹奖。

9:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。

10:1985年,德国数学家弗雷指出了“谷山——志村猜想”和“费马大定理”之间的关系;他提出了一个命题 :假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。

11:1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。

12:1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理”

编辑本段证明过程

1676年数学家根据费马的少量提示用无穷递降法证明n=4。1678年和1738年德国数学家莱布尼兹和瑞士数学家欧拉也各自证明n=4。1770年欧拉证明n=3。1823年和1825年法国数学家勒让德和德国数学家狄利克雷先后证明n =5。1832年狄利克雷试图证明n=7,却只证明了n=14。1839年法国数学家拉梅证明了n=7,随后得到法国数学家勒贝格的简化……19世纪贡献最大的是德国数学家库麦尔,他从1844年起花费20多年时间,创立了理想数理论,为代数数论奠下基础;库麦尔证明当n<100时除37、59、67三数外费马大定理均成立。

为推进费马大定理的证明,布鲁塞尔和巴黎科学院数次设奖。1908年德国数学家佛尔夫斯克尔临终在哥廷根皇家科学会悬赏10万马克,并充分考虑到证明的艰巨性,将期限定为100年。数学迷们对此趋之若鹜,纷纷把“证明”寄给数学家,期望凭短短几页初等变换夺取桂冠。德国数学家兰道印制了一批明信片由学生填写:“亲爱的先生或女士:您对费马大定理的证明已经收到,现予退回,第一个错误出现在第_页第_行。”

在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。”

数学家就是这样缓慢而执着地向前迈进,直至1955年证明n<4002。大型计算机的出现推进了证明速度,1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。但数学是严谨的科学,n值再大依然有限,从有限到无穷的距离漫长而遥远。

1983年,年仅29岁的德国数学家法尔廷斯证明了代数几何中的莫德尔猜想,为此在第20届国际数学家大会上荣获菲尔茨奖;此奖相当于数学界的诺贝尔奖,只授予40岁以下的青年数学家。莫德尔猜想有一个直接推论:对于形如x^n+y^n=z^n(n≥4)的方程至多只有有限多组整数解。这对费马大定理的证明是一个有益的突破。从“有限多组”到“一组没有”还有很大差距,但从无限到有限已前进了一大步。

1955年日本数学家谷山丰提出过一个属于代数几何范畴的谷山猜想,德国数学家弗雷在1985年指出:如果费马大定理不成立,谷山猜想也不成立。随后德国数学家佩尔提出佩尔猜想,补足了弗雷观点的缺陷。至此,如果谷山猜想和佩尔猜想都被证明,费马大定理不证自明。

事隔一载,美国加利福尼亚大学伯克利分校数学家里比特证明了佩尔猜想。

1993年6月,英国数学家、美国普林斯顿大学教授安德鲁·怀尔斯在剑桥大学牛顿数学研究所举行了一系列代数几何学术讲演。在6月23日最后一次讲演《椭圆曲线、模型式和伽罗瓦表示》中,怀尔斯部分证明了谷山猜想。所谓部分证明,是指怀尔斯证明了谷山猜想对于半稳定的椭圆曲线成立——谢天谢地,与费马大定理相关的那条椭圆曲线恰好是半稳定的!这时在座60多位知名数学家意识到,困扰数学界三个半世纪的费马大定理被证明了!这一消息在讲演后不胫而走,许多大学都举行了游行和狂欢,在芝加哥甚至出动了警察上街维持秩序。

编辑本段证明方法

五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。

这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过怀尔斯的证明马上被检验出有少许的瑕疵,於是怀尔斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。

用不定方程来表示,费马大定理即:当n > 2时,不定方程x^n + y^n = z^n 没有xyz≠0的整数解。为了证明这个结果,只需证明方程x^4 + y^4 = z^4 ,(x , y) = 1和方程x^p + y^p = z^p ,(x , y) = (x , z) = (y , z) = 1〔p是一个奇素数〕均无xyz≠0的整数解。

n = 4的情形已由莱布尼茨和欧拉解决。费马本人证明了p = 3的情,但证明不完全。勒让德〔1823〕和狄利克雷〔1825〕证明了p = 5的情形。1839年,拉梅证明了p = 7的情形。1847年,德国数学家库默尔对费马猜想作出了突破性的工作。他创立了理想数论,这使得他证明了当p < 100时,除了p = 37,59,67这三个数以外,费马猜想都成立。后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。在近代数学家中,范迪维尔对费马猜想作出重要贡献。他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。他和另外两位数学家共同证明了当p < 4002时费马猜想成立。

现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进。到1977年为止,瓦格斯塔夫证明了p < 125000时,费马猜想成立。《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则证明中用到了法尔廷斯〔Faltings〕的结果。另外一个重要结果是:费马猜想若有反例,即存在x > 0,y > 0,z > 0,n > 2,使x^n + y^n = z^n ,则x > 101,800,000。

说明:

要证明费马最后定理是正确的

(即x^ n+ y^n = z^n 对n>2 均无正整数解)

只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解。

高中的数学公式定理大集中

三角函数公式表

同角三角函数的基本关系式

倒数关系: 商的关系: 平方关系:

tanα •cotα=1

sinα •cscα=1

cosα •secα=1 sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α

(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”)

诱导公式(口诀:奇变偶不变,符号看象限。)

sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα

cot(-α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈Z)

两角和与差的三角函数公式 万能公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=——————

1-tanα •tanβ

tanα-tanβ

tan(α-β)=——————

1+tanα •tanβ

2tan(α/2)

sinα=——————

1+tan2(α/2)

1-tan2(α/2)

cosα=——————

1+tan2(α/2)

2tan(α/2)

tanα=——————

1-tan2(α/2)

半角的正弦、余弦和正切公式 三角函数的降幂公式

二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα

tan2α=—————

1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α

tan3α=——————

1-3tan2α

三角函数的和差化积公式 三角函数的积化和差公式

α+β α-β

sinα+sinβ=2sin———•cos———

2 2

α+β α-β

sinα-sinβ=2cos———•sin———

2 2

α+β α-β

cosα+cosβ=2cos———•cos———

2 2

α+β α-β

cosα-cosβ=-2sin———•sin———

2 2 1

sinα •cosβ=-[sin(α+β)+sin(α-β)]

2

1

cosα •sinβ=-[sin(α+β)-sin(α-β)]

2

1

cosα •cosβ=-[cos(α+β)+cos(α-β)]

2

1

sinα •sinβ=— -[cos(α+β)-cos(α-β)]

2

化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式

集合、函数

集合 简单逻辑

任一x∈A x∈B,记作A B

A B,B A A=B

A B={x|x∈A,且x∈B}

A B={x|x∈A,或x∈B}

card(A B)=card(A)+card(B)-card(A B)

(1)命题

原命题 若p则q

逆命题 若q则p

否命题 若 p则 q

逆否命题 若 q,则 p

(2)四种命题的关系

(3)A B,A是B成立的充分条件

B A,A是B成立的必要条件

A B,A是B成立的充要条件

函数的性质 指数和对数

(1)定义域、值域、对应法则

(2)单调性

对于任意x1,x2∈D

若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数

若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数

(3)奇偶性

对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数

若f(-x)=-f(x),称f(x)是奇函数

(4)周期性

对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂

正分数指数幂的意义是

负分数指数幂的意义是

(2)对数的性质和运算法则

loga(MN)=logaM+logaN

logaMn=nlogaM(n∈R)

指数函数 对数函数

(1)y=ax(a>0,a≠1)叫指数函数

(2)x∈R,y>0

图象经过(0,1)

a>1时,x>0,y>1;x<0,0<y<1

0<a<1时,x>0,0<y<1;x<0,y>1

a> 1时,y=ax是增函数

0<a<1时,y=ax是减函数 (1)y=logax(a>0,a≠1)叫对数函数

(2)x>0,y∈R

图象经过(1,0)

a>1时,x>1,y>0;0<x<1,y<0

0<a<1时,x>1,y<0;0<x<1,y>0

a>1时,y=logax是增函数

0<a<1时,y=logax是减函数

指数方程和对数方程

基本型

logaf(x)=b f(x)=ab(a>0,a≠1)

同底型

logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)

换元型 f(ax)=0或f (logax)=0

数列

数列的基本概念 等差数列

(1)数列的通项公式an=f(n)

(2)数列的递推公式

(3)数列的通项公式与前n项和的关系

an+1-an=d

an=a1+(n-1)d

a,A,b成等差 2A=a+b

m+n=k+l am+an=ak+al

等比数列 常用求和公式

an=a1qn_1

a,G,b成等比 G2=ab

m+n=k+l aman=akal

不等式

不等式的基本性质 重要不等式

a>b b<a

a>b,b>c a>c

a>b a+c>b+c

a+b>c a>c-b

a>b,c>d a+c>b+d

a>b,c>0 ac>bc

a>b,c<0 ac<bc

a>b>0,c>d>0 ac<bd

a>b>0 dn>bn(n∈Z,n>1)

a>b>0 > (n∈Z,n>1)

(a-b)2≥0

a,b∈R a2+b2≥2ab

|a|-|b|≤|a±b|≤|a|+|b|

证明不等式的基本方法

比较法

(1)要证明不等式a>b(或a<b),只需证明

a-b>0(或a-b<0=即可

(2)若b>0,要证a>b,只需证明 ,

要证a<b,只需证明

综合法 综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

分析法 分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”

复数

代数形式 三角形式

a+bi=c+di a=c,b=d

(a+bi)+(c+di)=(a+c)+(b+d)i

(a+bi)-(c+di)=(a-c)+(b-d)i

(a+bi)(c+di )=(ac-bd)+(bc+ad)i

a+bi=r(cosθ+isinθ)

r1=(cosθ1+isinθ1)•r2(cosθ2+isinθ2)

=r1•r2〔cos(θ1+θ2)+isin(θ1+θ2)〕

〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)

k=0,1,……,n-1

解析几何

1、直线

两点距离、定比分点 直线方程

|AB|=| |

|P1P2|=

y-y1=k(x-x1)

y=kx+b

两直线的位置关系 夹角和距离

或k1=k2,且b1≠b2

l1与l2重合

或k1=k2且b1=b2

l1与l2相交

或k1≠k2

l2⊥l2

或k1k2=-1 l1到l2的角

l1与l2的夹角

点到直线的距离

2圆锥曲线

圆 椭 圆

标准方程(x-a)2+(y-b)2=r2

圆心为(a,b),半径为R

一般方程x2+y2+Dx+Ey+F=0

其中圆心为( ),

半径r

(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系

(2)两圆的位置关系用圆心距d与半径和与差判断 椭圆

焦点F1(-c,0),F2(c,0)

(b2=a2-c2)

离心率

准线方程

焦半径|MF1|=a+ex0,|MF2|=a-ex0

双曲线 抛物线

双曲线

焦点F1(-c,0),F2(c,0)

(a,b>0,b2=c2-a2)

离心率

准线方程

焦半径|MF1|=ex0+a,|MF2|=ex0-a 抛物线y2=2px(p>0)

焦点F

准线方程

坐标轴的平移

这里(h,k)是新坐标系的原点在原坐标系中的坐标。

1.集合元素具有①确定性②互异性③无序性

2.集合表示方法①列举法 ②描述法

③韦恩图 ④数轴法

3.集合的运算

⑴ A∩(B∪C)=(A∩B)∪(A∩C)

⑵ Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

4.集合的性质

⑴n元集合的子集数:2n

真子集数:2n-1;非空真子集数:2n-2

高中数学概念总结

一、 函数

1、 若集合A中有n 个元素,则集合A的所有不同的子集个数为 ,所有非空真子集的个数是 。

二次函数 的图象的对称轴方程是 ,顶点坐标是 。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即 , 和 (顶点式)。

2、 幂函数 ,当n为正奇数,m为正偶数,m<n时,其大致图象是

3、 函数 的大致图象是

由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。

二、 三角函数

1、 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点P到原点的距离记为 ,则sin = ,cos = ,tg = ,ctg = ,sec = ,csc = 。

2、同角三角函数的关系中,平方关系是: , , ;

倒数关系是: , , ;

相除关系是: , 。

3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: , = , 。

4、 函数 的最大值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是该图象与直线 的交点都是该图象的对称中心。

5、 三角函数的单调区间:

的递增区间是 ,递减区间是 ; 的递增区间是 ,递减区间是 , 的递增区间是 , 的递减区间是 。

6、

7、二倍角公式是:sin2 =

cos2 = = =

tg2 = 。

8、三倍角公式是:sin3 = cos3 =

9、半角公式是:sin = cos =

tg = = = 。

10、升幂公式是: 。

11、降幂公式是: 。

12、万能公式:sin = cos = tg =

13、sin( )sin( )= ,

cos( )cos( )= = 。

14、 = ;

= ;

= 。

15、 = 。

16、sin180= 。

17、特殊角的三角函数值:

0

sin 0 1 0

cos 1 0 0

tg 0 1 不存在 0 不存在

ctg 不存在 1 0 不存在 0

18、正弦定理是(其中R表示三角形的外接圆半径):

19、由余弦定理第一形式, =

由余弦定理第二形式,cosB=

20、△ABC的面积用S表示,外接圆半径用R表示,内切圆半径用r表示,半周长用p表示则:

① ;② ;

③ ;④ ;

⑤ ;⑥

21、三角学中的射影定理:在△ABC 中, ,…

22、在△ABC 中, ,…

23、在△ABC 中:

24、积化和差公式:

① ,

② ,

③ ,

④ 。

25、和差化积公式:

① ,

② ,

③ ,

④ 。

三、 反三角函数

1、 的定义域是[-1,1],值域是 ,奇函数,增函数;

的定义域是[-1,1],值域是 ,非奇非偶,减函数;

的定义域是R,值域是 ,奇函数,增函数;

的定义域是R,值域是 ,非奇非偶,减函数。

2、当 ;

对任意的 ,有:

当 。

3、最简三角方程的解集:

四、 不等式

1、若n为正奇数,由 可推出 吗? ( 能 )

若n为正偶数呢? ( 均为非负数时才能)

2、同向不等式能相减,相除吗 (不能)

能相加吗? ( 能 )

能相乘吗? (能,但有条件)

3、两个正数的均值不等式是:

三个正数的均值不等式是:

n个正数的均值不等式是:

4、两个正数 的调和平均数、几何平均数、算术平均数、均方根之间的关系是

6、 双向不等式是:

左边在 时取得等号,右边在 时取得等号。

五、 数列

1、等差数列的通项公式是 ,前n项和公式是: = 。

2、等比数列的通项公式是 ,

前n项和公式是:

3、当等比数列 的公比q满足 <1时, =S= 。一般地,如果无穷数列 的前n项和的极限 存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S= 。

4、若m、n、p、q∈N,且 ,那么:当数列 是等差数列时,有 ;当数列 是等比数列时,有 。

5、 等差数列 中,若Sn=10,S2n=30,则S3n=60;

6、等比数列 中,若Sn=10,S2n=30,则S3n=70;

六、 复数

1、 怎样计算?(先求n被4除所得的余数, )

2、 是1的两个虚立方根,并且:

3、 复数集内的三角形不等式是: ,其中左边在复数z1、z2对应的向量共线且反向(同向)时取等号,右边在复数z1、z2对应的向量共线且同向(反向)时取等号。

4、 棣莫佛定理是:

5、 若非零复数 ,则z的n次方根有n个,即:

它们在复平面内对应的点在分布上有什么特殊关系?

都位于圆心在原点,半径为 的圆上,并且把这个圆n等分。

6、 若 ,复数z1、z2对应的点分别是A、B,则△AOB(O为坐标原点)的面积是 。

7、 = 。

8、 复平面内复数z对应的点的几个基本轨迹:

① 轨迹为一条射线。

② 轨迹为一条射线。

③ 轨迹是一个圆。

④ 轨迹是一条直线。

⑤ 轨迹有三种可能情形:a)当 时,轨迹为椭圆;b)当 时,轨迹为一条线段;c)当 时,轨迹不存在。

⑥ 轨迹有三种可能情形:a)当 时,轨迹为双曲线;b) 当 时,轨迹为两条射线;c) 当 时,轨迹不存在。

七、 排列组合、二项式定理

1、 加法原理、乘法原理各适用于什么情形?有什么特点?

加法分类,类类独立;乘法分步,步步相关。

2、排列数公式是: = = ;

排列数与组合数的关系是:

组合数公式是: = = ;

组合数性质: = + =

= =

3、 二项式定理: 二项展开式的通项公式:

八、 解析几何

1、 沙尔公式:

2、 数轴上两点间距离公式:

3、 直角坐标平面内的两点间距离公式:

4、 若点P分有向线段 成定比λ,则λ=

5、 若点 ,点P分有向线段 成定比λ,则:λ= = ;

=

=

若 ,则△ABC的重心G的坐标是 。

6、求直线斜率的定义式为k= ,两点式为k= 。

7、直线方程的几种形式:

点斜式: , 斜截式:

两点式: , 截距式:

一般式:

经过两条直线 的交点的直线系方程是:

8、 直线 ,则从直线 到直线 的角θ满足:

直线 与 的夹角θ满足:

直线 ,则从直线 到直线 的角θ满足:

直线 与 的夹角θ满足:

9、 点 到直线 的距离:

10、两条平行直线 距离是

11、圆的标准方程是:

圆的一般方程是:

其中,半径是 ,圆心坐标是

思考:方程 在 和 时各表示怎样的图形?

12、若 ,则以线段AB为直径的圆的方程是

经过两个圆

的交点的圆系方程是:

经过直线 与圆 的交点的圆系方程是:

13、圆 为切点的切线方程是

一般地,曲线 为切点的切线方程是: 。例如,抛物线 的以点 为切点的切线方程是: ,即: 。

注意:这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做。

14、研究圆与直线的位置关系最常用的方法有两种,即:

①判别式法:Δ>0,=0,<0,等价于直线与圆相交、相切、相离;

②考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。

15、抛物线标准方程的四种形式是:

16、抛物线 的焦点坐标是: ,准线方程是: 。

若点 是抛物线 上一点,则该点到抛物线的焦点的距离(称为焦半径)是: ,过该抛物线的焦点且垂直于抛物线对称轴的弦(称为通径)的长是: 。

17、椭圆标准方程的两种形式是: 和

18、椭圆 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 。其中 。

19、若点 是椭圆 上一点, 是其左、右焦点,则点P的焦半径的长是 和 。

20、双曲线标准方程的两种形式是: 和

21、双曲线 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 ,渐近线方程是 。其中 。

22、与双曲线 共渐近线的双曲线系方程是 。与双曲线 共焦点的双曲线系方程是 。

23、若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 ;

若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 。

24、圆锥曲线的焦参数p的几何意义是焦点到准线的距离,对于椭圆和双曲线都有: 。

25、平移坐标轴,使新坐标系的原点 在原坐标系下的坐标是(h,k),若点P在原坐标系下的坐标是 在新坐标系下的坐标是 ,则 = , = 。

九、 极坐标、参数方程

1、 经过点 的直线参数方程的一般形式是: 。

2、 若直线 经过点 ,则直线参数方程的标准形式是: 。其中点P对应的参数t的几何意义是:有向线段 的数量。

若点P1、P2、P是直线 上的点,它们在上述参数方程中对应的参数分别是 则: ;当点P分有向线段 时, ;当点P是线段P1P2的中点时, 。

3、圆心在点 ,半径为 的圆的参数方程是: 。

3、 若以直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系,点P的极坐标为 直角坐标为 ,则 , , 。

4、 经过极点,倾斜角为 的直线的极坐标方程是: ,

经过点 ,且垂直于极轴的直线的极坐标方程是: ,

经过点 且平行于极轴的直线的极坐标方程是: ,

经过点 且倾斜角为 的直线的极坐标方程是: 。

5、 圆心在极点,半径为r的圆的极坐标方程是 ;

圆心在点 的圆的极坐标方程是 ;

圆心在点 的圆的极坐标方程是 ;

圆心在点 ,半径为 的圆的极坐标方程是 。

6、 若点M 、N ,则 。

十、 立体几何

1、求二面角的射影公式是 ,其中各个符号的含义是: 是二面角的一个面内图形F的面积, 是图形F在二面角的另一个面内的射影, 是二面角的大小。

2、若直线 在平面 内的射影是直线 ,直线m是平面 内经过 的斜足的一条直线, 与 所成的角为 , 与m所成的角为 , 与m所成的角为θ,则这三个角之间的关系是 。

3、体积公式:

柱体: ,圆柱体: 。

斜棱柱体积: (其中, 是直截面面积, 是侧棱长);

锥体: ,圆锥体: 。

台体: , 圆台体:

球体: 。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/3834790.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-18
下一篇2023-08-18

发表评论

登录后才能评论

评论列表(0条)

    保存