语音情感识别和脸部情感识别相比,各有方便、技术成熟、直观、难以伪造的优势。语音识别技术的应用通常是在人机交互上,让机器通过是被和理解语音信号之后转化为相应的文本和命令然后进行执行。人脸识别网络技术使用通用的摄像机作为识别数据信息资源获取装置,以非接触的方式在识别研究对象未察觉的情况下完成识别发展过程。语音情感识别和脸部情感识别各具有以下优势:
1、语音情感识别优势。和脸部情感识别技术相比,语音识别技术的优势似乎更加明显,语音识别技术不会遗失和忘记数据,不用记忆,在应用的时候也比较方便。语音识别技术比较成熟,用户的接受度也很高,声音输入设备造价也很具有优势,在隐私问题上,语音识别技术也比较有保障,所以推广使用还是很有市场的。
2、脸部情感识别优势。人脸识别系统使用可以方便,人脸识别技术是以人脸图像为基础的,最直观的信息来源,便于人工确认和审核。人脸识别技术是独一无二的,与语音情感识别技术相比,人脸识别技术具有准确率高、难以伪造、误识别率和拒识率低的特点。
语音识别的研究工作大约开始于上世纪50年代,当时AT&T的Bell实验室实现了第一个可识别十个英文数字的语音识别系统——Audry系统。
20世纪60年代,计算机的应用推动了语音识别的发展。这一时期的重要成果是提出了动态规划(DP)和线性预测分析技术(LP),其中后者较好地解决了语音信号产生模型的问题,对语音识别的发展产生了深远影响。
20世纪70年代,语音识别领域取得了突破。在理论上,LP技术得到进一步发展,动态时间归正技术(DTW)基本成熟,特别是提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。在实践上,实现了基于线性预测倒谱和DTW技术的特定人孤立语音识别系统。
20世纪80年代,语音识别研究进一步走向深入,其显著特征是HMM模型和人工神经元网络(ANN)在语音识别中的成功应用。HMM模型的广泛应用应归功于AT&T的Bell实验室Rabiner等科学家的努力,他们把原本艰涩的HMM纯数学模型工程化,从而为更多研究者了解和认识。采用ANN和HMM模型建立的语音识别系统,性能相当。
进入20世纪90年代,随着多媒体时代的来临,迫切要求语音识别系统从实验室走向实用。许多发达国家如美国、日本、韩国以及IBM、Apple、AT&T、NTT等著名公司都为语音识别系统的实用化开发研究投以巨资。
我国语音识别研究工作一直紧跟国际水平,国家也给予了高度重视。鉴于中国未来庞大的市场,国外也非常重视汉语语音识别的研究。美国、新加坡等地聚集了一批来自大陆、台湾、香港等地的学者,研究成果已达到相当高水平。因此,国内除了要加强理论研究外,更要加快从实验室演示系统到商品的转化。
语音识别系统可有不同的分类方式。
(1)根据对说话人说话方式的要求,可以分为孤立字(词)语音识别系统,连接字语音识别系统以及连续语音识别系统。
(2)根据对说话人的依赖程度可以分为特定人和非特定人语音识别系统。
(3)根据词汇量大小,可以分为小词汇量、中等词汇量、大词汇量以及无限词汇量语音识别系统。
不同的语音识别系统,虽然具体实现细节有所不同,但所采用的基本技术相似。
语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。此外,还涉及到语音识别单元的选取等问题。
语音识别技术的场景应用比较多元,例如我们生活中的各个语音助理,天猫精灵等等,各种智能的导航与人机的对话。
语音识别技术中NLP(自然语义识别)仍然是非常重要的一部分,首先需要让机器正确的识别到语音中的意义,转化成语义向量,然后再结合大数据进行应答。因此技术的门槛和难度是比较高的,而具体到应用场景的话,例如最常见的语音识别的敏感内容和违规内容的审核等,则还需要大量的数据积累沉淀。
因此,不建议自行开发,可以应用市面上成熟的平台,图普科技对于语音、等各种内容的审核是非常健全的,可以自行体验。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)