语音识别是属于计算机的什么技术?

语音识别是属于计算机的什么技术?,第1张

语音识别是属于计算机的什么技术

语音识别是模式识别的一个分支,又从属于信号处理科学领域,同时与语音学、语言学、数理统计及神经生物学等学科有非常密切的关系。另一方面,语音也是人类赖以进行思维的主要工具。因此,这一科学与认知科学和人工智能等领域的研究有千丝万缕的联系,是目前发展最迅速的信息科学研究领域中的内容之一。

  语音识别研究的目的就是让机器“听懂”人类口述的语言。包括两方面的含义:其一是逐字逐句听懂非转化成书面语言文字;其二是对口述语言中所包含的要求或询问加以理解,做出正确响应,而不拘泥于所有词的正确转换。语音识别系统从讲叙方式角度可分为孤立词、连接词和连续语音三种。从服务对象的角度可分为特定人与非特定人。即系统只针对一个用户或可用于任意用户。

  语音识别研究从20世纪50年代初期开始,60年代中期作为重要的课题展开工作。如今,随着DTW的提出,HMM的引入,语言模型建立等,语音识别研究有了飞跃性的进展。80年代以来,一些比较简单的语音识别系统已进入商品化阶段。90年代语音识别的主攻方向定为连续语音,大词表,非特定人的识别算法和系统开发。至今,IBM的Via Voice为代表的“听写机”系统正式投入市场,逐步被人们接受。语音识别、语音合成、多媒体等技术相结合,将为计算机提供友好交互方式,为网络技术、计算机应用与普及提供应有的条件。

行业主要相关上市公司:科大讯飞(002230)、百度(09888HK)、腾讯(00700HK)、搜狗(SOGONYSE)等。

本文核心数据:全球智能语音市场规模、中国智能语音市场规模、中国智能家居市场规模、中国智能网联车渗透率

智能语音进入加速应用阶段

智能语音技术的关键部分主要包括语音识别、语音处理、语音合成等,随着相关技术的不断成熟,智能语音已经逐渐进入加速应用阶段,在车载语音、智慧教育、智能安防、智能家居、智慧医疗等领域都将出现智能语音技术的身影。

全球智能语音市场高速发展

从全球视角看,智能语音市场规模高速增长,2021年估算在264亿美元左右,较2020年203亿美元的市场规模增长30%。

中国智能语音市场规模超过280亿元

2017-2021年中国智能语音市场规模持续增长。根据德勤估算数据,2021年中国智能语音市场规模突破250亿元,达到285亿元,较2020年的217亿元增长31%。

智能家居市场规模或将超过6500亿元,推动智能语音市场发展

智能家居是智能语音应用的主要领域之一,随着物联网、人工智能等技术的快速发展,智能语音在家居领域的应用将进一步提速。2017-2021年中国智能家居市场规模不断增长,2021年预估突破5800亿元,2022年将超过6500亿元,将带动智能语音市场的持续提升。

中国智能网联车通透率提升,车载智能语音系统应用深化

2020年中国智能网联车市场渗透率已经达到49%,车载智能语音系统的应用也逐渐深化。根据IHS

Markit的预测,2025年中国智能网联车渗透率将提升至75%,进一步推动智能语音在汽车领域的应用。

综上所述,随着语音技术的发展,智能语音技术进入加速应用阶段,应用领域呈现多样化趋势。全球智能语音市场高速发展,中国智能语音市场也不甘落后,市场规模超过280亿元。智能网联车和智能家居市场的持续发展将进一步推动智能语音在这两个行业中的应用。

以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。

AR/VR常作为孪生兄弟被相提并论,被普遍认为为应用层新技术或者说是“智能可穿戴设备”,相比人工智能相对的“算法”标签,显得不够有深度有内涵高大上,那AR和人工智能之间到底是什么关系?AR属不属于当下我们认知中的人工智能?

AR属不属于人工智能?看完本文你就懂了 AR资讯

2018年3月,上海市经济和信息化委员会公示了2018年第一批本市人工智能创新发展专项拟支持项目。“一共有19家创新企业入围,亮风台作为AR公司也入围此次支持项目”亮风台工作人员告诉青亭网,这不是AR企业第一次被划归到人工智能,但这种归类方式也并不常见。据了解此专项由经信委与市财政局联合开展,拟支持金额超过1亿。

简单梳理下AR的核心技术

AR(Augmented

Reality),是在现实世界中叠加虚拟信息,也即给现实做“增强”,这种增强可以是来自视觉、听觉乃至触觉,主要的目的均是在感官上让现实的世界和虚拟的世界融合在一起。

其中,对现实世界的认知主要体现在视觉上,这需要通过摄像机来帮助获取信息,以图像和视频的形式反馈。通过视频分析,实现对三维世界环境的感知理解,比如场景的3D结构,里面有什么物体,在空间中的什么地方。而3D交互理解的目的是告知系统要“增强”的内容。

这其中有几个关键点:

首先是3D环境理解。要理解看到的东西,主要依靠物体/场景的识别和定位技术。识别主要是用来触发AR响应,而定位则是知道在什么地方叠加AR内容。定位根据精度的不同也可以分为粗定位和细定位,粗定位就是给出一个大致的方位,比如区域和趋势。而细定位可能需要精确到点,比如3D坐标系下的XYZ坐标、物体的角度。根据应用环境的不同,两种维度的定位在AR中都有应用需求。在AR领域,常见的检测和识别任务有人脸检测、行人检测、车辆检测、手势识别、生物识别、情感识别、自然场景识别等。

在感知现实3D世界并和虚拟内容融合后,需要以一定方式将这种虚实融合信息呈现出来,这里面需要的就是AR中的第二个关键技术:显示技术,

目前大多数的AR系统采用透视式头盔显示器,这其中又分为视频透视和光学透视,其他的代表有光场技术(主要因Magic

Leap而显名)、全息投影(在科幻影视剧作品中常出现)等。

AR中的第三个关键技术在于人机交互,用以让人和叠加后的虚拟信息互动,AR追求在触摸按键之外自然的人机交互方式,比如语音、手势、姿态、人脸等,用的比较多的语音跟手势。

人工智能和AR的技术关联

在人工智能领域有几个概念常被提及,如深度学习(DL)、机器学习(ML),在学术领域包括人工智能(AI)在内几大领域均有自己的研究界限,而在普遍意义上,我们常说的是泛意的人工智能,涵括所有“让机器像人一样”的技术的应用方向。

从这张图也可以简单一窥三者的关系,深度学习是实现机器学习的一种技术方式,而机器学习是为了让机器变得智能,去达到人工智能。可以说人工智能是最终目标,而机器学习是为了实现这个目标延伸出的一个技术方向。在这其中,还有另一个重要概念为计算机视觉(CV),主要来研究如何让机器像人去“看”,是目前人工智能概念中的一个重要分支,这也是因为人类获取信息最主要的方式之一就是视觉,目前计算机视觉已经在商业市场发挥价值,比如人脸识别;自动驾驶中读取交通信号和注意行人以导航;工业机器人用来检测问题控制过程;三维环境的重建图像的处理等等。这些概念既有区分也有一定范围的重叠。

其中,2006年开始,Hinton引发的深度学习热潮开始蔓延,在一定程度上带动了AI的又一次崛起,十年中,在包括语音识别、计算机视觉、自然语言处理在内的多个领域取得重大突破,并向应用领域延伸,正发展的如火如荼。

在AR的核心技术中,3D环境理解、3D交互理解和计算机视觉、深度学习都有着紧密的联系。3D环境理解在学术界里主要对应的是计算机视觉领域,而近年来深度学习在计算机视觉中得到广泛应用。交互方面,更趋自然的交互方式如手势和语音在硬件终端的使用,得益于近几年深度学习在相关领域的突破。也可以说,深度学习在AR中应用主要在视觉关键技术。

目前,AR最常见的形式是2D扫描识别,如腾讯QQ-AR火炬活动、支付宝五福等多数AR营销中所见,用手机扫描识别图出现叠加的内容,但主要的研发方向还在3D物体识别和3D场景建模。

现实的物体是以3D形态存在的,有不同的角度和空间方位。所以一个自然的扩展就是从2D识别到3D物体识别,识别物体的类别和姿态,深度学习可以用在这里。以水果识别为例,识别不同类别的水果,并且给出定位区域,即集成了物体识别与检测的功能。

3D场景建模,从识别3D物体扩大到更大更复杂的3D区域。比如识别场景里面有哪些东西、它们的空间位置和相互关系等等,这就是3D场景建模,是AR比较核心的技术。这其中涉及目前热门的SLAM(实时定位与地图构建)。通过扫描某个场景,然后在上面叠加虚拟战场等三维虚拟内容。如果只是基于普通2D图像识别就需要有特定的,而在不可见时会识别失败。而在SLAM技术里面,即使特定平面不存在,但是空间定位依然非常精确,就是因为有周围3D环境的帮助。

这里想探讨下深度学习和SLAM技术的融合,计算机视觉大体上可以分两个流派,一种基于学习的思路,例如特征提取-特征分析-分类,目前深度学习技术在这一路线上取得了主导性的地位。另外一种路线是基于几何的视觉,从线条、边缘、3D形状推出物体的空间结构信息,代表性的技术就是SFM/SLAM。基于学习的方向上深度学习基本上一统天下,但是在基于几何视觉的领域,目前相关的进展还很少。从学术界而言,深度学习技术的研究进展可以说日新月异,而SLAM技术最新十年的进展相对较少。在国际视觉顶级会议ICCV

2015年度组织的SLAM技术专题讨论会上,基于近年深度学习在视觉其它领域的快速发展,有与会专家曾提出SLAM中采用深度学习的可能性,但是目前还没有成熟的思路。总体而言,短期内将深度学习和SLAM融合是一个值得研究的方向,长远来看联合语义和几何信息是一个非常有价值的趋势。因此,SLAM+DL值得期待。

在交互方式方面,主要的包括语音识别和手势识别,语音识别在目前已经取得了较大进展,国内如百度、科大讯飞、云知声等都是其中的佼佼者,AR公司更想突破的是手势识别的成熟商业化。

“亮风台展示过的一款基于深度学习的手势识别系统,主要定义了上下左右、顺时针、逆时针六种手势”亮风台工作人员告诉青亭网,先实现人手的检测和定位,然后通过识别相应的手势轨迹来实现对人手势的识别。虽然人脸识别等其他人工智能热门领域在AR中也有使用,但不是AR公司重要的研发方向。

以上不难看出,AR的底层技术或者说基础部分是计算机视觉以及关联领域的融合,而当下热门的深度学习和AR的结合,也是算法工程师们的努力方向。这也是AR为计算机视觉与人机交互的交叉学科,AR的基础是人工智能和计算机视觉等说法的依据。

20180528163858218png

图:计算机视觉与AR流程关联

在去年今日头条发布的《人工智能影响力报告》中也简单统计了人工智能科学家的分布情况,这其中包括人脸识别、语音识别、机器人、AR、芯片等领域的公司与大型研发机构,高端研发人员的分布也说明了AI领域的细分方向。

那AR究竟是不是人工智能?

对AR从业者来说,理想的状态是用更智能的AR终端去取代智能手机,所以对于用户来说接触使用AR首先受影响的是内容,其次是终端,AR产业链可以粗略划分为技术提供商、智能终端研发公司,以及AR内容提供商。在这其中,AR设备提供商不可避免关注硬件技术,如底层的芯片、电池、光学镜片等,以及硬件本身的性能优化,而内容提供商更倾向于在现有技术基础上优化内容及表现。所以我们可以说AR技术提供商,或者说在底层算法研发上有一定成绩的AR公司是人工智能公司。

对公司来说,特别是创企会把底层技术转化为成熟的产品或服务,这可能是如无人机、AR智能终端、机器人等,也可能是行业解决方案,以达到商业目的,并且这已经成为在沸腾声音之后,媒体、企业以及大众对AI企业的期待和要求。近期,人工智能产业发展联盟(AIIA)出版的图书《人工智能浪潮:科技改变生活的100个前沿AI应用》将对外发布,以及涵括了目前巨头公司以及创企在商业化上的前沿成果,也直接反映了AI目前的主要商业化方向。

作为技术驱动的商业领域,无论是AR还是人工智能的其他多数方向,技术距离完全成熟还有很长的路程要走,在整个产业链逐渐繁荣,关注商业化实现的同时,也需要有更多公司机构去不断拓展技术边界,建立核心竞争力,让行业爆发更大的价值与潜力,如此,AI时代中国弯道超车当可期。

语音识别可以应用到的场景:

1 智能家居

相对于传统的控制、交互形式,在智能家居领域中使用语音交互对于用户会更加便捷。亚马逊、谷歌、百度、小米、阿里巴巴等企业都先后发布了自己的智能音箱产品。目前,智能音箱作为所有智能家居交互的入口,扮演着一个非常重要的角色,且不用附加在一些重服务家电上。除了常规的日程设置、音乐播放、天气等信息查询,智能音箱还可以控制灯光、空调、电视、窗帘、门窗、安防与监控等。未来的家居场景,是全屋产品的智能化,届时语音与其他技术会更加深度地融合。图1-4展示了几种智能音箱的形态。

2 智慧生活与办公

智慧生活是一个比较宽泛的场景,包括语音控制硬件、可穿戴设备和语音助手等。智能可穿戴设备趋于小屏化、无屏化的特点决定了智能语音将成为其天然入口,无论是眼镜、耳机,还是手表、手环,语音交互会更方便也更自然。语音助手更是语音识别深度学习时代最早的落地产品,根据Strategy Analytics的预计,到2023年,90%的智能手机都会配备AI语音助手。

其他的消费级产品还包括翻译机、录音笔、语音输入法等,这些产品强依赖于语音识别技术本身的准确率,在办公、教育、旅游等领域的应用也都越来越广泛。

3 智能汽车

另一个正在飞速发展的智能语音落地场景,是智能汽车。除了L4,L5级别的自动驾驶,车载语音交互作为智能座舱中的一部分,在未来汽车形态中扮演着更加重要的角色。与传统车载系统通过按键或者屏幕操控不同,多模态融合检测、智能语音交互、多屏互动手势操作等一系列技术,将成为下一代智能座舱的标配。由于车内环境相对稳定,语音识别率较高,因此座舱内是部署语音交互的极佳落地场景。由此带来的司机双手的解放不仅能增强安全性,也能极大地提高用户驾驶体验。

4 语音质检

语音质检普遍被应用在智能外呼和客服领域。通过语音识别与声纹识别的相关技术,不仅可以对客户说话的内容进行语音语义分析,挖掘客户潜在需求,进行用户画像,提供个性化的客户服务与产品的精准营销,还可以对对话内容的合规性进行稽核与审查,进一步提升服务满意度。

5 智慧物流

拣货是物流仓储作业中成本最高的一项任务,占总体作业量的50%~70%。语音拣货是仓库作业人员通过蓝牙耳麦与语音系统对话推进拣货工作的方式。传统的语音拣选是人与人沟通,指示拣货员挑选货物,耗时长,成本高。而通过语音识别和合成技术,可以使仓库作业人员直接与仓库管理系统进行对话沟通。系统通过语音指导作业员到指定区域的库位拿取或放置货品;作业员通过语言进行动作确认,仓库管理系统直接识别作业人员的语音进行相应的数据处理。

人工智能识别技术是指通过计算机、照相机、扫描仪等设备,自动获取并识别出目标指令、数据等信息的技术手段。最早起源于声控技术(语音识别技术),声控技术曾被广泛应用于智能手机的控制和互动中,其核心是将人的语音识别出来,与手机指令集进行对比,从而控制手机。

根据识别对象是否具有生命特征,人工智能识别技术主要可分为两类:有生命识别和无生命识别。

有生命人工智能识别技术实质是指与人体生命特征存在一定关联的技术,包括语音识别、指纹识别、人脸识别、虹膜识别等。语音识别技术工作原理是基于对识别者自身发出语音的科学有效识别,正确识别出语音的内容,或者通过语音判断出说话人的身份(说活人识别);人工智能指纹识别技术在实践应用中,其工作原理是通过对人体指纹展开智能识别,最终正确判断识别出指纹所属的对应的人,从而满足实际需求;人工智能人脸识别技术是基于对人的脸部展开智能识别,对人的脸部不同结构特征进行科学合理检验,最终明确判断识别出检验者的实际身份;虹膜识别是通过虹膜的特征判断其实际身份。

无生命识别技术实质是指与人体生命特征不存在任何关联的技术,该项技术主要包括射频识别技术、智能卡技术、条形码识别技术。射频识别技术的工作核心是无线电磁波,其具体的工作原理是:无线电信号在电磁场下进行传送,完成数据和标签的识别;条形码识别技术包括一维码技术和二维码技术,二维码技术是在一维码技术基础之上发展出来的,给数据储存留下的空间更大,同时还可以纠错,在信息标示和信息采集中具有十分有效的运用;智能卡识别技术的识别对象主要是智能卡,智能卡主要是由集成电路板组成的,其工作主要是针对数据展开的运算和储存,通过将计算技术良好的融入到智能卡当中,针对数据进行的各种工作都做到了高效完成。

人工智能识别技术的应用非常广泛,而且不同种类的人工智能识别技术已经应用到了 社会 各领域,例如在语言翻译、面部识别等多个 社会 活动中都能够看到计算机人工智能的参与。除此之外,二维码识别和使用是人工智能识别技术运用的最典型的方式,它的利用主要是以二维码的形式生成程序和指令,在用户的移动终端屏幕上生成黑白格子拼接的平面图形,这些平面图形的分布通常来说具有一定的规律性,通过各种图形的排列组合,二维码图案具有唯一性,因此用户可以对二维码图案进行保存和记录。

我们相信,随着研究人员不断地对人工智能的有关技术进行优化和创新,人工智能识别技术将会更大程度地满足人们工作和生活需求。

本文由北京信息 科技 大学通信学院副教授李红莲进行科学性把关。

科普中国中央厨房

新华网科普事业部

科普中国-科学原理一点通

联合出品

更多精彩内容,请下载科普中国客户端。

目前的语音技术能力主要包含了四个方面:语音唤醒、语音识别、语音理解和语音合成

语音唤醒

语音唤醒指在待机的状态下,用户说出特定指令(唤醒词)使设备进入工作状态或完成某一操作;当前更多应用于手机、可穿戴设备、车载设备、智能家居等。

1、常见两种唤醒方式:“一呼一答”和“唤醒词+命令词”;即多轮对话(一次唤醒、一个任务、多轮交互)和连续对话(一次唤醒、多个任务,无需唤醒)

2、唤醒词设计原则:易唤醒、低误唤醒 、品牌性、易记易读性

3、华为和苹果手机语言助手唤醒交互:

· 手机的语音助手都是基于特定的人识别,非用户本人无法用同样的唤醒词唤醒手机语音指令,

· 采取的唤醒方式均为“一呼一答”

· 唤醒词设计,华为的“我的荣耀”基于品牌调性,但易读性不强

· 在语音交互过程中,用问答的方式给到用户强反馈,单纯的铃声不足以引起用户触达,通常情况下用户使用语音是在不方便查看手机或者有其他干扰的情况下的。

语音识别

语音识别技术,也被称为 自动语音识别 Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。

1、语音识别包括两个阶段 :训练和识别。

训练阶段:收集大量的语音语料,经过预处理和特征提取后得到特征矢量参数,最后通过特征建模达到建立训练语音的参考模型库的目的。

识别阶段:将输入语音的特征矢量参数和参考模型库中的参考模型 进行相似性度量比较,把相似性最高的输入特征矢量作为识别结果输出。

2、语音识别对象:特定人识别(手机语音助手,设定只识别手机用户个人的声音)、非特定人识别(语音搜索,识别搜索词)。

特定人识别是指识别对象为专门的人,非特定人识别是指识别对象是针对大多数用户,一般需要采集多个人的语音进行录音和训练,经过学习,达到较高的识别率。

3、基于现有技术开发嵌入式语音交互系统,目前主要有两种方式:

一种是直接在嵌入式处理器中调用语音开发包;另一种是嵌入式处理器外围扩展语音芯片。第一种方法程序量大,计算复杂,需要占用大量的处理器资源,开发周期长;

第二种方法相对简单,只需要关注语音芯片的接口部分与微处理器相连,结构简单,搭建方便,微处理器的计算负担大大降低,增强了可靠性,缩短了开发周期。

语音理解

语义理解是指机器能够结合上下文,自然地理解用户的需求,并能给出正确以及人性化的反馈。

语音合成

语音合成是通过机械的,电子的方法产生人造语音技术。语音合成的关键点是真人音色模拟,一致性、流畅性、稳定和有情感。

语音合成,又称 文语转换(Text to Speech)技术 ,能将任意文字信息实时转化为标准流畅的语音朗读出来,相当于给机器装上了人工嘴巴。它涉及声学、语言学、 数字信号处理 、计算机科学等多个学科技术,是 中文信息处理 领域的一项前沿技术,解决的主要问题就是如何将文字信息转化为可听的声音信息,也即让机器像人一样开口说话。

TTS结构

语言处理

在文语转换系统中起着重要的作用,主要模拟人对自然语言的理解过程——文本规整、词的切分、 语法分析 和 语义分析 ,使计算机对输入的文本能完全理解,并给出后两部分所需要的各种发音提示。

韵律处理

为合成语音规划出音段特征,如音高、音长和音强等,使合成语音能正确表达语意,听起来更加自然。

声学处理

根据前两部分处理结果的要求输出语音,即合成语音。

登录

语音识别技术,语音识别技术是什么意思

电子工程师

2010-03-06

2442

分享海报

基础知识

7人已加入

+加入圈子

描述

语音识别技术,语音识别技术是什么意思

 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。

  语音识别技术的应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。语音识别技术与其他自然语言处理技术如机器翻译及语音合成技术相结合,可以构建出更加复杂的应用,例如语音到语音的翻译。

  语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。

特定人语音识别的方法

  目前,常用的说话人识别方法有模板匹配法、统计建模法、联接主义法(即人工神经网络实现)。考虑到数据量、实时性以及识别率的问题,笔者采用基于矢量量化和隐马尔可夫模型(HMM)相结合的方法。

  说话人识别的系统主要由语音特征矢量提取单元(前端处理)、训练单元、识别单元和后处理单元组成,其系统构成如图1所示。

  由上图也可以看出,每个司机在购买车后必须将自己的语音输入系统,也就是训练过程,当然最好是在安静、次数达到一定的数目。从此在以后驾驶过程中就可以利用这个系统了。

  所谓预处理是指对语音信号的特殊处理:预加重,分帧处理。预加重的目的是提升高频部分,使信号的频谱变得平坦,以便于进行频谱分析或声道参数分析。用具有 6dB/倍频程的提升高频特性的预加重数字滤波器实现。虽然语音信号是非平稳时变的,但是可以认为是局部短时平稳。故语音信号分析常分段或分帧来处理。

  历史

  早在计算机发明之前,自动语音识别的设想就已经被提上了议事日程,早期的声码器可被视作语音识别及合成的雏形。而1920年代生产的"Radio Rex"玩具狗可能是最早的语音识别器,当这只狗的名字被呼唤的时候,它能够从底座上弹出来。最早的基于电子计算机的语音识别系统是由AT&T贝尔实验室开发的Audrey语音识别系统,它能够识别10个英文数字。其识别方法是跟踪语音中的共振峰。该系统得到了98%的正确率。到1950年代末,伦敦学院(Colledge of London)的Denes已经将语法概率加入语音识别中。

  1960年代,人工神经网络被引入了语音识别。这一时代的两大突破是线性预测编码Linear Predictive Coding (LPC), 及动态时间弯折Dynamic Time Warp技术。

  语音识别技术的最重大突破是隐含马尔科夫模型Hidden Markov Model的应用。从Baum提出相关数学推理,经过Labiner等人的研究,卡内基梅隆大学的李开复最终实现了第一个基于隐马尔科夫模型的大词汇量语音识别系统Sphinx。[3]。此后严格来说语音识别技术并没有脱离HMM框架。

  尽管多年来研究人员一直尝试将“听写机”推广,语音识别技术在目前还无法支持无限领域,无限说话人的听写机应用。

  模型

  目前,主流的大词汇量语音识别系统多采用统计模式识别技术。典型的基于统计模式识别方法的 语音识别系统由以下几个基本模块所构成

  信号处理及特征提取模块。该模块的主要任务是从输入信号中提取特征,供声学模型处理。同时,它一般也包括了一些信号处理技术,以尽可能降低环境噪声、信道、说话人等因素对特征造成的影响。 统计声学模型。典型系统多采用基于一阶隐马尔科夫模型进行建模。 发音词典。发音词典包含系统所能处理的词汇集及其发音。发音词典实际提供了声学模型建模单元与语言模型建模单元间的映射。 语言模型。语言模型对系统所针对的语言进行建模。理论上,包括正则语言,上下文无关文法在内的各种语言模型都可以作为语言模型,但目前各种系统普遍采用的还是基于统计的N元文法及其变体。 解码器。解码器是语音识别系统的核心之一,其任务是对输入的信号,根据声学、语言模型及词典,寻找能够以最大概率输出该信号的词串。 从数学角度可以更加清楚的了解上述模块之间的关系。首先,统计语音识别的最基本问题是,给定输入信号或特征序列,符号集(词典),求解符号串使得:

  W = argmaxP(W | O) 通过贝叶斯公式,上式可以改写为

  由于对于确定的输入串O,P(O)是确定的,因此省略它并不会影响上式的最终结果,因此,一般来说语音识别所讨论的问题可以用下面的公式来表示,可以将它称为语音识别的基本公式。 W = argmaxP(O | W)P(W)

  从这个角度来看,信号处理模块提供了对输入信号的预处理,也就是说,提供了从采集的语音信号(记为S)到 特征序列O的映射。而声学模型本身定义了一些更具推广性的声学建模单元,并且提供了在给定输入特征下,估计P(O | uk)的方法。

  为了将声学模型建模单元串映射到符号集,就需要发音词典发挥作用。它实际上定义了映射的映射。为了表示方便,也可以定义一个由到U的全集的笛卡尔积,而发音词典则是这个笛卡尔积的一个子集。并且有:

  最后,语言模型则提供了P(W)。这样,基本公式就可以更加具体的写成:

  对于解码器来所,就是要在由,,ui以及时间标度t张成的搜索空间中,找到上式所指明的W。

  语音识别是一门交叉学科,语音识别正逐步成为信息技术中人机接口的关键技术,语音识别技术与语音合成技术结合使人们能够甩掉键盘,通过语音命令进行操作。语音技术的应用已经成为一个具有竞争性的新兴高技术产业。

  与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。

  一、语音识别的发展历史

  (1)国外研究历史及现状

  语音识别的研究工作可以追溯到20世纪50年代AT&T贝尔实验室的Audry系统,它是第一个可以识别十个英文数字的语音识别系统。

  但真正取得实质性进展,并将其作为一个重要的课题开展研究则是在60年代末70年代初。这首先是因为计算机技术的发展为语音识别的实现提供了硬件和软件的可能,更重要的是语音信号线性预测编码(LPC)技术和动态时间规整(DTW)技术的提出,有效的解决了语音信号的特征提取和不等长匹配问题。这一时期的语音识别主要基于模板匹配原理,研究的领域局限在特定人,小词汇表的孤立词识别,实现了基于线性预测倒谱和DTW技术的特定人孤立词语音识别系统;同时提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。

  随着应用领域的扩大,小词汇表、特定人、孤立词等这些对语音识别的约束条件需要放宽,与此同时也带来了许多新的问题:第一,词汇表的扩大使得模板的选取和建立发生困难;第二,连续语音中,各个音素、音节以及词之间没有明显的边界,各个发音单位存在受上下文强烈影响的协同发音(Co-articulation)现象;第三,非特定人识别时,不同的人说相同的话相应的声学特征有很大的差异,即使相同的人在不同的时间、生理、心理状态下,说同样内容的话也会有很大的差异;第四,识别的语音中有背景噪声或其他干扰。因此原有的模板匹配方法已不再适用。

  实验室语音识别研究的巨大突破产生于20世纪80年代末:人们终于在实验室突破了大词汇量、连续语音和非特定人这三大障碍,第一次把这三个特性都集成在一个系统中,比较典型的是卡耐基梅隆大学(CarnegieMellonUniversity)的Sphinx系统,它是第一个高性能的非特定人、大词汇量连续语音识别系统。

  这一时期,语音识别研究进一步走向深入,其显著特征是HMM模型和人工神经元网络(ANN)在语音识别中的成功应用。HMM模型的广泛应用应归功于AT&TBell实验室Rabiner等科学家的努力,他们把原本艰涩的HMM纯数学模型工程化,从而为更多研究者了解和认识,从而使统计方法成为了语音识别技术的主流。

  统计方法将研究者的视线从微观转向宏观,不再刻意追求语音特征的细化,而是更多地从整体平均(统计)的角度来建立最佳的语音识别系统。在声学模型方面,以Markov链为基础的语音序列建模方法HMM(隐式Markov链)比较有效地解决了语音信号短时稳定、长时时变的特性,并且能根据一些基本建模单元构造成连续语音的句子模型,达到了比较高的建模精度和建模灵活性。在语言层面上,通过统计真实大规模语料的词之间同现概率即N元统计模型来区分识别带来的模糊音和同音词。另外,人工神经网络方法、基于文法规则的语言处理机制等也在语音识别中得到了应用。

  20世纪90年代前期,许多著名的大公司如IBM、苹果、AT&T和NTT都对语音识别系统的实用化研究投以巨资。语音识别技术有一个很好的评估机制,那就是识别的准确率,而这项指标在20世纪90年代中后期实验室研究中得到了不断的提高。比较有代表性的系统有:IBM公司推出的ViaVoice和DragonSystem公司的NaturallySpeaking,Nuance公司的NuanceVoicePlatform语音平台,Microsoft的Whisper,Sun的VoiceTone等。

  其中IBM公司于1997年开发出汉语ViaVoice语音识别系统,次年又开发出可以识别上海话、广东话和四川话等地方口音的语音识别系统ViaVoice'98。它带有一个32,000词的基本词汇表,可以扩展到65,000词,还包括办公常用词条,具有“纠错机制”,其平均识别率可以达到95%。该系统对新闻语音识别具有较高的精度,是目前具有代表性的汉语连续语音识别系统。

  (2)国内研究历史及现状

  我国语音识别研究工作起步于五十年代,但近年来发展很快。研究水平也从实验室逐步走向实用。从1987年开始执行国家863计划后,国家863智能计算机专家组为语音识别技术研究专门立项,每两年滚动一次。我国语音识别技术的研究水平已经基本上与国外同步,在汉语语音识别技术上还有自己的特点与优势,并达到国际先进水平。中科院自动化所、声学所、清华大学、北京大学、哈尔滨工业大学、上海交通大学、中国科技大学、北京邮电大学、华中科技大学等科研机构都有实验室进行过语音识别方面的研究,其中具有代表性的研究单位为清华大学电子工程系与中科院自动化研究所模式识别国家重点实验室。

  清华大学电子工程系语音技术与专用芯片设计课题组,研发的非特定人汉语数码串连续语音识别系统的识别精度,达到948%(不定长数字串)和968%(定长数字串)。在有5%的拒识率情况下,系统识别率可以达到969%(不定长数字串)和987%(定长数字串),这是目前国际最好的识别结果之一,其性能已经接近实用水平。研发的5000词邮包校核非特定人连续语音识别系统的识别率达到9873%,前三选识别率达9996%;并且可以识别普通话与四川话两种语言,达到实用要求。

  中科院自动化所及其所属模式科技(Pattek)公司2002年发布了他们共同推出的面向不同计算平台和应用的“天语”中文语音系列产品——PattekASR,结束了中文语音识别产品自1998年以来一直由国外公司垄断的历史。

  二、语音识别系统的分类

  语音识别系统可以根据对输入语音的限制加以分类。如果从说话者与识别系统的相关性考虑,可以将识别系统分为3类:(1)特定人语音识别系统:仅考虑对于专人的话音进行识别;(2)非特定人语音系统:识别

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/7602249.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存