2017年 10 月 11 日,阿里巴巴达摩院正式成立,马云的一句 “ 活得要比阿里巴巴长”,让外界对它的未来发展,有了更 “意味深长” 的期待。
在近三年多的时间里,达摩院在人工智能学术科研与应用上齐头并进,无论在国际学术顶会以及各类竞赛上,还是在推动学术成果的商业化落地上,都交出了亮眼的成绩单,这也反过来吸引着人工智能领域的顶尖研究者们都汇聚于此。
对于这些顶尖研究者们目前正在开展的研究工作,想必大家都充满了探知欲!
7月9日(晚)19:30-21:00 ,AI科技评论就将联合阿里达摩院,外加阿里集团在学术科研上同样“坚挺”的存在——阿里安全,给大家呈上一场 “ACL 2020 系列论文解读·阿里巴巴专场” 直播!
届时,来自阿里达摩院机器智能技术团队和阿里安全安全智能团队的 6 位高级算法专家、算法工程师以及研究型实习生们,将分别聚焦于多任务学习、少样本文本分类、 任务型对话、神经机器翻译、知识蒸馏、跨域分词标注等NLP 细分领域,为大家带来一场论文解读盛宴!
本次分享的嘉宾具体都有谁呢?下面一一揭晓:分享主题: SpanMlt:一种基于跨度的用于属性词和观点词配对抽取的多任务学习框架 分享嘉宾:黄龙涛
分享内容:
属性词和观点词抽取,是细粒度的基于属性的情感分析(ABSA)的两个关键问题。属性-观点词对( aspect-opinion pairs)可以为消费者和观点挖掘系统提供相关产品或服务的全局配置文件。但是,传统方法无法在没有给定属性词和观点词的情况下,直接输出属性-观点词对。尽管研究者最近提出了一些共提取方法来联合提取属性词和观点词,但是并不能配对抽取两者。为此,本文提出了一种端到端方法来解决属性词和观点词的配对抽取(PAOTE)任务。此外,本文从联合词和关系抽取的角度而非此前大多数工作中执行的序列标注方法的角度,来处理该问题。我们提出了一个基于共享跨度的多任务学习框架,其中在跨度边界的监督下提取词。同时,使用跨度表示法来联合识别配对关系。大量实验表明,我们的模型始终优于 SOTA 方法。
分享内容:
现有的工作往往使用元学习(meta learning)的方法,通过在一系列meta-task中切换来获得少样本学习的能力,但是在task间的切换会带来遗忘的问题,因此考虑使用记忆机制来辅助meta learning的训练。在本工作中,我们将监督学习得到的分类参数作为meta learning的全局记忆,并提出了动态记忆路由算法,基于dynamic routing的方式将全局记忆信息融入到meta task的训练和预测阶段。此外,动态记忆路由算法还可以使用query信息来增强归纳类别表示的能力,对口语场景下的语言多样性表达有更好的泛化性能。在中英文场景少样本分类任务数据集上,均取得了STOA的结果。
分享主题:多领域对话动作和回复联合生成分享嘉宾:田俊峰
分享内容:
在任务型对话中,产生流畅且信息丰富的回复至关重要。现有pipeline方法通常先预测多个对话动作,然后使用它们的全局表示来辅助回复生成。这种方法有两个缺陷:第一,在预测对话动作时,多领域的固有结构被忽略了;其次,在生成回复时没有考虑到对话动作和回复之间的语义联系。为了解决这些问题,我们提出了一种同时生成对话动作和回复的神经联合生成模型。与以往的方法不同,我们的对话动作生成模块可以保留多领域对话动作的层次结构,同时我们的回复生成模块可以动态地关注到相关的对话动作。在训练时,我们采用不确定性损失函数来自适应地调整两个任务的权重。在大规模MultiWOZ数据集上进行了评估,实验结果表明,我们的模型在自动评估和人工评估上都比SOTA模型有很好的提升。分享主题:神经机器翻译的多尺度协同深度模型分享嘉宾:魏相鹏
近年来,神经机器翻译(NMT)方法凭借其出色的翻译性能在大量应用场景中取代了基于统计的机器翻译方法。目前,制约NMT模型性能的因素主要包括模型的特征表达能力和数据规模。因此,我们提出一种基于多尺度协作(MSC)机制的深度神经机器翻译模型,以提高模型对底层(具象化)和高层(抽象化)特征的建模能力。
实验证明,(1) 多尺度协作机制有助于构建极深的NMT模型的同时带来性能上的提升,(2) 基于MSC机制的深度NMT模型能够更好地翻译语义结构复杂的自然语言句子。
分享主题:多语种序列标注的结构级知识蒸馏分享嘉宾:王新宇
多语言序列标注是一项使用单一统一模型预测多语言标签序列的任务。与依赖于多个单语模型相比,使用多语言模型具有模型规模小、在线服务容易和对低资源语言通用的优点。然而,由于模型容量的限制,目前的多语种模型仍然远远低于单独的单语模型。本文提出将多个单语言模型(teachers)的结构知识提取到统一的多语言模型(student)中,以缩小单语言模型与统一的多语言模型之间的差距。我们提出了两种基于结构层次信息的知识挖掘方法:
分享主题:跨域中文分词的远程标注与对抗耦合训练分享嘉宾:丁宁
完全监督神经方法在中文分词(CWS)的任务上取得了重大进展。但是,如果由于域间的分布差异和集外词(OOV)问题导致域迁移,则监督模型的性能始终一直大幅下降。为了实时缓解此问题,本文将跨域中文分词的远程标注和对抗性训练直观地结合在一起。
7月9日,6位来自阿里的分享嘉宾,与大家不见不散!
ACL 2020原定于2020年7月5日至10日在美国华盛顿西雅图举行,因新冠肺炎疫情改为线上会议。为促进学术交流,方便国内师生提早了解自然语言处理(NLP)前沿研究,AI 科技评论将推出「ACL 实验室系列论文解读」内容,同时欢迎更多实验室参与分享,敬请期待!
随着情感教学越来越被重视,老师有必要通过学习情感原则,运用积极情感在教学中的作用,更好地达到完成教学目标,优化教学过程。下面是我搜集整理的情感教学的情感原则分析论文,欢迎阅读借鉴。
摘要: 为了使课堂教学更好的适应社会的发展,从根本上解决我国教学中“重知轻情”的状况,在教学中必须重视情感的作用。笔者分析了积极情感在教学中的重要作用后,从不同角度提出三点情感原则:快乐原则、动机原则和适应原则,并分析怎样通过这三点原则以达到提高教学目标,优化教学课堂并促进学生全面发展的教学目的。
关键词: 情感 情感教学 积极情感 情感原则
为了使课堂教学更好的适应社会的发展,从根本上改善我国教学中“重知轻情”的状况,在教学中必须重视情感的作用。笔者分析了积极情感在教学中的重要作用后,从不同的角度提出三点情感原则:快乐原则、动机原则和适应原则,并分析怎样通过这三点原则以达到提高教学目标,优化教学课堂并促进学生全面发展的教学目的。
一、情感教学的含义
“情感教学是一种教学理念,就是通过情感来优化教学。”具体的说,就是在充分考虑教学中认知因素的同时,又充分重视情感的作用,努力发挥其积极的作用以达到提高教学目标,优化教学课堂,最终促进学生全面发展的教学目的。其中包涵了两层意义:第一,在情感教学中要重视积极情感的作用。情感是一把双刃剑,有积极的一面也有消极的一面。积极情感,如自信,自尊,高兴等都有利于教学;而一些消极的情感如自卑,焦虑,沮丧等不仅给教学带来负面影响,还会阻碍学生的全面发展。“例如焦虑,会破坏大脑前额叶的神经环境,严重阻碍记忆功能的运转,大大的减弱了学习的能力。”所以在教学中要运用有利于教学的积极情感,尽量减少消极情感的产生来提高教学质量。第二,始终将学生的全面发展作为情感教学的目标。情感教学的最终目标不仅仅是教学本身,甚至超越了传统意义上的学术领域,而是促进学生的生理与精神上的全面发展。心理学家和作家Daniel Goleman博士曾有力地提出了对于所有教育制度需要扩大其任务范围。他指出尤其是在18世纪的西方教育中,人们一直致力于误用甚至是否认一切情感领域的问题或者可以称为“情感文盲”。他将“一种新的学校可实行的培养学生的方法——将能力与情感同时带进课堂”做为解决办法,并说明了许多在教学中运用情感的成功例子。我国多为应试教育,大多数学生只会做题,不会做人,因此将情感带入课堂更显得尤为重要。
二、情感原则
情感教学是一种教学理念。每一种教学理念在运用于实践时,首先一定需要建立相应的原则。简单的说就是老师在教学中需要借鉴和运用的一些情感规则。在我国的教学理念中,老师大多重视学生认知的发展,即使有一些教学上的情感原则也没有对情感教学的提高有所帮助。鉴此从教学心理学的不同角度,我们提出了三条情感原则:快乐原则,动机原则和适应原则。
1快乐原则
作为情感教学的基础,快乐原则取决于教学中产生的所有情感,重点关注其中积极情感的作用。例如,学生在上学之前刚刚挨了一顿骂,如果老师没有及时发现并正确开导学生,使其迅速调整状态,那该学生在此次课堂教学中的学习能力一定会受到影响。“快乐”在此有两种涵义:开心与兴趣。开心是兴趣的基础。情感教学心理学的研究将情绪(mood)分成了三种:基本情绪(emotion),感觉(feeling)和感知 (sentiment)。第一种满足人们日常生活中的生理需求;第二种包含了人们的社会情感需求如亲情,友情,爱情;第三种成为了人们情感中高级的社会需求如对知识,美的渴望。这三种感觉是递进的。只有当学生满足了前两种“开心”,才会相应的产生最后一种的“兴趣”。心理学家通过分析人的大脑得出当人的大脑接收到来自外界的刺激时,它会进行评价和做出相应的反应。评价的结果有两种,积极的与消极的,同样做出的反应也分为积极与消极。例如,如果一个老师在第一节课时留给学生深刻的良好的印象,学生的大脑就会对此老师做出积极的评价,此时他的积极的情感就会使其对老师所讲的内容感兴趣,从而达到了教学的目的。
2动机原则
有了学习的兴趣之后,更深入的情感的动机就成了学生学习的至关重要的因素。正如希尔加德所说的“精力充沛的行动会引导它的方向”。动机原则更多的被运用于学生第二语的教学中。Gardner和Lambert根据学习目的不同把动机区分为两大类:1)融合型动机(integrative motivation),指学习者对目的语社团有特殊兴趣,期望参与或融入该社团的社会生活;2)工具型动机(instrumental motivation),指学习者为了达到某种目的,如找工作,阅读和翻译技术资料等而学习语言的动机。Gardner认为:持融合型动机的学习者很可能比持工具型动机的学习者更成功,在特定的环境中,持工具型动机的学习者也有可能比持融合型动机的学习者更成功。从认知心理学角度出发,可以把动机分为内在动机和外在动机。内在动机(intrinsic motivation)是指学生的学习动力来源于自身的兴趣、爱好和求知欲等内在因素;外在动机(extrinsic motivation)是指学生受外部因素的推动而学习外语,如为了表扬,想要出国等。因此在情感教学中,老师应该更注重培养学生的工具型动机与内存动机。
3适应原则
适应原则考虑的是教学过程中的环境。我们可以将教学环境看作是一个电脑。外部环境如教室,书本等是其硬件设备,教学中的情感环境则是其软件设备。优质的硬件设备固然重要,但软件设备从本质上决定一台电脑的价值。适应原则正是要求老师无论是在课堂还是在课外的教学过程中,努力与学生建立积极的情感环境。教学是学生与老师围绕书本展开的一种行为活动。其目的是认知,但如果没有良好的情感环境,恐怕很难达到预期的教学目标。一项对309个在校学生的调查中显示,有70%的人同意对老师的态度直接与对其所教的内容的兴趣程度有关。
三个情感原则既有区别也有联系。三个原则从不同的角度指导着教学。快乐原则基于教学中产生的所有情感因素,重点关注积极情感所起的作用;动机原则基于学生在学习过程中的不同的学习目的,重点关注积极情感作用下的动机怎样帮助学生更好的全面发展;适应原则则基于教学中积极的情感教学环境,重点关注良好的师生关系对教学的积极作用。
虽然三个原则的着重点不同,但在一定意义上是相互重合的。例如,情感原则强调学生的积极的情感学习状态,这同样有助于建立一个良好的师生关系;动机原则强调积极的有利于教学和学习的情感动机,这也同样有助于培养学生的积极情感;适应原则强调情感的教学环境,这同样有助于培养学生的积极情感与认知动机。总之,老师在运用情感原则的过程中不仅要认识到其不同之处,更要将三者有机的结合在一起加以运用。
一个好的教学过程包含认知与情感两个方面。随着情感教学越来越被重视,老师有必要通过学习情感原则,运用积极情感在教学中的作用,更好地达到完成教学目标,优化教学过程,最终促进学生全面发展的目的。这是一个较长的实践改变过程,只有在重视认知的基础上,靠对情感教学不断的研究改进、积累经验才能最终使情感教学真正的走进课堂。
参考文献:
[1]卢家楣情感教学心理学原理的实践运用[M]上海:上海教育出版社,2003
[2]Arnold, Jane Cambridge Books for Language Teachers: Affect in Language Learning[M]Cambridge: Cambridge University Press,1999
[3]Hilgard, E, R L Atkinson and R C Atkinson Introduction to Psychology[M] 7th edNew York: Harcourt Brace Jovanovich,1979
[4] Gardner, R, P Smythe, R Clement, and L Gliksman "Second-Language learning: a social-psychological perspective" Canadian Modern Language Review ,1976,(32):199
;<article>
课程地址: https://classcourseraorg/nlp/lecture/31
情感分析 (Sentiment analysis)又可以叫做
意见抽取 (Opinion extraction)
意见挖掘 (Opinion mining)
情感挖掘 (Sentiment mining)
主观分析 (Subjectivity analysis)等等。
引用的论文:
Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan 2002 Thumbs up Sentiment Classification using Machine Learning Techniques EMNLP-2002, 79—86
Bo Pang and Lillian Lee 2004 A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts ACL, 271-278
另外需注意,Binarized (Boolean feature) Multinomial Naïve Bayes不同于Multivariate Bernoulli Naïve Bayes,MBNB在文本情感分析上的效果并不好。另外课中也提到可以用交叉验证的方式进行训练验证。
下面罗列了一些比较流行的词典:
当我们拿到一个词我们如何判断他在每个类别中出现的概率呢?以IMDB影评为例
但是!我们不能用单纯的原始计数(raw counts)方法来进行打分,如下图
可以看出,这些否定词同样可以作为单词极性的一个判断依据。
具体步骤为:
联合概率 / 独立的两个概率乘积
之后我们可以看一下统计结果,分别来自于用户好评和差评的统计:
可以看到极性划分的还不错
</article>
</main>
转自csdn
第一步,就是确定一个词是积极还是消极,是主观还是客观。这一步主要依靠词典。
英文已经有伟大词典资源:SentiWordNet 无论积极消极、主观客观,还有词语的情感强度值都一并拿下。
但在中文领域,判断积极和消极已经有不少词典资源,如Hownet,NTUSD但用过这些词典就知道,效果实在是不咋滴(最近还发现了大连理工发布的情感词汇本体库,不过没用过,不好评价)。中文这方面的开源真心不够英文的做得细致有效。而中文识别主客观,那真的是不能直视。
中文领域难度在于:词典资源质量不高,不细致。另外缺乏主客观词典。
第二步,就是识别一个句子是积极还是消极,是主观还是客观。
有词典的时候,好办。直接去匹配看一个句子有什么词典里面的词,然后加总就可以计算出句子的情感分值。
但由于不同领域有不同的情感词,比如看上面的例子,“蓝屏”这个词一般不会出现在情感词典之中,但这个词明显表达了不满的情绪。因此需要另外根据具体领域构建针对性的情感词典。
如果不那么麻烦,就可以用有监督的机器学习方法。把一堆评论扔到一个算法里面训练,训练得到分类器之后就可以把评论分成积极消极、主观客观了。
分成积极和消极也好办,还是上面那个例子。5颗星的评论一般来说是积极的,1到2颗星的评论一般是消极的,这样就可以不用人工标注,直接进行训练。但主客观就不行了,一般主客观还是需要人来判断。加上中文主客观词典不给力,这就让机器学习判断主客观更为困难。
中文领域的难度:还是词典太差。还有就是用机器学习方法判断主客观非常麻烦,一般需要人工标注。
另外中文也有找到过资源,比如这个用Python编写的类库:SnowNLP 就可以计算一句话的积极和消极情感值。但我没用过,具体效果不清楚。
到了第三步,情感挖掘就升级到意见挖掘(Opinion Mining)了。
这一步需要从评论中找出产品的属性。拿手机来说,屏幕、电池、售后等都是它的属性。到这一步就要看评论是如何评价这些属性的。比如说“屏幕不错”,这就是积极的。“电池一天都不够就用完了,坑爹啊”,这就是消极的,而且强度很大。
这就需要在情感分析的基础上,先挖掘出产品的属性,再分析对应属性的情感。
分析完每一条评论的所有属性的情感后,就可以汇总起来,形成消费者对一款产品各个部分的评价。
1、引言
贝叶斯方法是一个历史悠久,朴素贝叶斯中的朴素一词的来源就是假设各特征之间相互独立。这一假设使得朴素贝叶斯算法变得简单,但有时会牺牲一定的分类准确率。当然有着坚实的理论基础的方法,同时处理很多问题时直接而又高效,很多高级自然语言处理模型也可以从它演化而来。因此,学习贝叶斯方法,是研究自然语言处理问题的一个非常好的切入口。
2、贝叶斯公式
贝叶斯公式其实很简单,但是很常用,就一行:
而我们二分类问题的最终目的就是要判断 P(“属于某类”|“具有某特征”) 是否大于1/2就够了。贝叶斯方法把计算“具有某特征的条件下属于某类”的概率转换成需要计算“属于某类的条件下具有某特征”的概率,而后者获取方法就简单多了,我们只需要找到一些包含已知特征标签的样本,即可进行训练。而样本的类别标签都是明确的,所以贝叶斯方法在机器学习里属于有监督学习方法。
这里再补充一下,一般『先验概率』、『后验概率』是相对出现的,比如 P(Y)与 P(Y|X) 是关于 Y的先验概率与后验概率, P(X)与 P(X|Y)是关于 X的先验概率与后验概率。
4、垃圾邮件识别
我们可以通过一个例子来对邮件进行分类,识别垃圾邮件和普通邮件,如果我们选择使用朴素贝叶斯分类器,那目标就是判断 P(“垃圾邮件”|“具有某特征”) 是否大于1/2。现在假设我们有垃圾邮件和正常邮件各1万封作为训练集。需要判断以下这个邮件是否属于垃圾邮件:
也就是判断概率 P(“垃圾邮件”|“我司可办理正规发票(保真)17%增值税发票点数优惠!”)是否大于1/2。我们不难发现:通过上述的理解,也就是将其转换成的这个概率,计算的方法:就是写个计数器,然后+1 +1 +1统计出所有垃圾邮件和正常邮件中出现这句话的次数啊。也就是:
于是当我们接触到了中文NLP中,其中最为重要的技术之一:分词!!!也就是把一整句话拆分成更细粒度的词语来进行表示。另外,分词之后去除标点符号、数字甚至无关成分(停用词)是特征预处理中的一项技术。我们观察(“我”,“司”,“可”,“办理”,“正规发票”,“保真”,“增值税”,“发票”,“点数”,“优惠”),这可以理解成一个向量:向量的每一维度都表示着该特征词在文本中的特定位置存在。这种将特征拆分成更小的单元,依据这些更灵活、更细粒度的特征进行判断的思维方式,在自然语言处理与机器学习中都是非常常见又有效的。因此贝叶斯公式就变成了:
1、朴素贝叶斯(Naive Bayes),“Naive”在何处?
加上条件独立假设的贝叶斯方法就是朴素贝叶斯方法(Naive Bayes)。将句子(“我”,“司”,“可”,“办理”,“正规发票”) 中的 (“我”,“司”)与(“正规发票”)调换一下顺序,就变成了一个新的句子(“正规发票”,“可”,“办理”, “我”, “司”)。新句子与旧句子的意思完全不同。但由于乘法交换律,朴素贝叶斯方法中算出来二者的条件概率完全一样!计算过程如下:
其中“发票”重复了三次。
3、处理重复词语的三种方式
(1)、多项式模型:
如果我们考虑重复词语的情况,也就是说,重复的词语我们视为其出现多次,直接按条件独立假设的方式推导,则有:
统计计算 P(“词语”|S)时也是如此。
我们扫描一下训练集,发现“正规发票”这个词从出现过!!! ,于是 P(“正规发票”|S)=0 …问题严重了,整个概率都变成0了!!!朴素贝叶斯方法面对一堆0,很凄惨地失效了…更残酷的是这种情况其实很常见,因为哪怕训练集再大,也可能有覆盖不到的词语。本质上还是样本数量太少,不满足大数定律,计算出来的概率失真 。为了解决这样的问题,一种分析思路就是直接不考虑这样的词语,但这种方法就相当于默认给P(“正规发票”|S)赋值为1。其实效果不太好,大量的统计信息给浪费掉了。我们进一步分析,既然可以默认赋值为1,为什么不能默认赋值为一个很小的数?这就是平滑技术的基本思路,依旧保持着一贯的作风,朴实/土但是直接而有效。对于伯努利模型,P(“正规发票”|S)的一种平滑算法是:
接下来的核心问题就是训练出一个靠谱的分类器。首先需要有打好标签的文本。这个好找,豆瓣影评上就有大量网友对之前**的评价,并且对**进行1星到5星的评价。我们可以认为3星以上的评论都是好评,3星以下的评论都是差评。这样就分别得到了好评差评两类的语料样本。剩下就可以用朴素贝叶斯方法进行训练了。基本思路如下:
但是由于自然语言的特点,在提取特征的过程当中,有一些tricks需要注意:
当然经过以上的处理,情感分析还是会有一部分误判。这里涉及到许多问题,都是情感分析的难点:
(2)、拼写纠错
拼写纠错本质上也是一个分类问题。但按照错误类型不同,又分为两种情况:
真词错误复杂一些,我们将在接下来的文章中进行探讨。而对于非词错误,就可以直接采用贝叶斯方法,其基本思路如下:
训练样本1:该场景下的正常用词语料库,用于计算 P(候选词i)。
训练样本2:该场景下错误词与正确词对应关系的语料库,用于计算 P(错误词|候选词i)
当然,朴素贝叶斯也是有缺陷的。比如我们知道朴素贝叶斯的局限性来源于其条件独立假设,它将文本看成是词袋子模型,不考虑词语之间的顺序信息,例如:朴素贝叶斯会把“武松打死了老虎”与“老虎打死了武松”认作是一个意思。那么有没有一种方法提高其对词语顺序的识别能力呢?当然有,就是这里要提到的N-gram语言模型。接下来详细给大家介绍N-gram语言模型。
1、从假设性独立到联合概率链规则
与我们之前我们垃圾邮件识别中的条件独立假设是一样的:
4、N-gram实际应用举例
(1)、词性标注
词性标注是一个典型的多分类问题。常见的词性包括名词、动词、形容词、副词等。而一个词可能属于多种词性。如“爱”,可能是动词,可能是形容词,也可能是名词。但是一般来说,“爱”作为动词还是比较常见的。所以统一给“爱”分配为动词准确率也还足够高。这种最简单粗暴的思想非常好实现,如果准确率要求不高则也比较常用。它只需要基于词性标注语料库做一个统计就够了,连贝叶斯方法、最大似然法都不要用。词性标注语料库一般是由专业人员搜集好了的,长下面这个样子。其中斜线后面的字母表示一种词性,词性越多说明语料库分得越细;需要比较以下各概率的大小,选择概率最大的词性即可:
将公式进行以下改造,比较各概率的大小,选择概率最大的词性:
N-gram分类器是结合贝叶斯方法和语言模型的分类器。这里用 Y1,Y2分别表示这垃圾邮件和正常邮件,用 X表示被判断的邮件的句子。根据贝叶斯公式有:
比较这些概率的大小,找出使得 P(Yi|X)最大的 Yi即可得到 X 所属的分类(分词方案)了。Yi作为分词方案,其实就是个词串,比如(“我司”,“可”,“办理”,“正规发票”)(“我”,“司可办”,“理正规”,“发票”),也就是一个向量了。而上面贝叶斯公式中 P(X|Yi)项的意思就是在分类方案 Yi的前提下,其对应句子为 X的概率。而无论分词方案是(“我司”,“可”,“办理”,“正规发票”)还是(“我”,“司可办”,“理正规”,“发票”),或者其他什么方案,其对应的句子都是“我司可办理正规发票”。也就是说任意假想的一种分词方式之下生成的句子总是唯一的(只需把分词之间的分界符号扔掉剩下的内容都一样)。于是可以将 P(X|Yi)看作是恒等于1的。这样贝叶斯公式又进一步化简成为:
也就是说我们
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)