笛卡尔与克里斯汀公主的爱情故事(详细点,谢谢)

笛卡尔与克里斯汀公主的爱情故事(详细点,谢谢),第1张

斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。

那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿得破破烂烂的衣服和随身所带的几本数学书籍。

一个宁静的午后,笛卡尔照例坐在街头。突然,有人来到他旁边,拍了拍他的肩膀:“你在干什么呢”扭过头,笛卡尔看到一张年轻秀丽的脸庞,一双清澈的眼睛如湛蓝的湖水,楚楚动人。她就是瑞典的小公主。国王最宠爱的女儿克里斯汀。

她蹲下身,拿过笛卡尔的数学书和草稿纸,和他交谈起来。言谈中,他发现,这个小女孩思维敏捷,对数学有着浓厚的兴趣。

几天后,他意外地接到通知,国王聘请他做小公主的数学老师。满心疑惑的笛卡尔跟随前来通知的侍卫一起来到皇宫,在会客厅等候的时候,他看到前几天在街头偶遇的女孩子。从此,他当上了公主的数学老师。

公主的数学在笛卡尔的悉心指导下突飞猛进,他们之间也开始变得亲密起来。每天形影不离也使他们彼此产生了爱慕之心。

然而,没过多久,他们的恋情传到了国王的耳朵里。国王大怒,下令马上将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁。

笛卡尔回到法国后不久,便染上重病。在生命进入倒计时的那段日子,他日夜思念的还是街头偶遇的那张温暖的笑脸。在笛卡尔给克里斯汀寄出第十三封信后,他永远地离开了这个世界。这最后一封信上没有写一句话,只有一个方程:r=a(1-sin

e)。

国王不忍看着心爱的女儿每天闷闷不乐,便把这封信给了她。拿到信的克里斯汀立即明白了恋人的意图,找来纸和笔,着手把方程图形画了出来,一颗心形图案出现在眼前,克里斯汀不禁流下感动的泪水,这条曲线就是著名的“心形线”。

这封享誉世界的另类隋书,至今还保存在欧洲笛卡尔的纪念馆里。

扩展资料:

笛卡尔是法国著名的哲学家、物理学家、数学家、神学家,他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他与英国哲学家弗兰西斯·培根一同开启了近代西方哲学的“认识论”转向。

笛卡尔是二元论的代表,留下名言“我思故我在”(或译为“思考是唯一确定的存在”),提出了“普遍怀疑”的主张,是欧洲近代哲学的奠基人之一,黑格尔称他为“近代哲学之父”。

他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。笛卡尔自成体系,融唯物主义与唯心主义于一体,在哲学史上产生了深远的影响,同时,他又是一位勇于探索的科学家,他所建立的解析几何在数学史上具有划时代的意义。

笛卡尔堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。他创立了著名的平面直角坐标系。

-笛卡尔

世界上浪漫的表达方式有很多很多,文学家玩转文字来展示浪漫,艺术家玩转图画或音乐来渲染浪漫,而数学家也有自己的浪漫方式。最为著名的便是大数学家笛卡尔与其发现的心形图曲线(也成为心脏图)。

 

勒内·笛卡尔(Rene Descartes,1596——1650),著名的法国哲学家、科学家和数学家。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者提出了“普遍怀疑”的主张。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。据说笛卡尔57岁时邂逅了18岁的瑞典公主克里斯汀,笛卡尔总共给她寄出过13封情书,也就是在最后一封信中,只有短短的一个数学公式:r=a(1- sinθ)。而这正是著名的心形图曲线:

好吧,正好刚回答一个相似的问题

答案就贴过来吧。

在 图书馆看到过一本 数学史 专门介绍各个厉害的数学家,现在就写几个我记过笔记的吧。

拉马努强的的士数

1729 这是个有趣的数字!可以用两个立方之和来表达而且有两种表达方式的数之中,1729是最小的。大神学习数学的方式绝非常人。他买了本写着五千多条数学定理和公式的书,又买了个厚厚的本子,然后开始一条条用自己的方式证明。

后来他结了婚,在真奈找了份抄写员的工作,怎么看起来有些眼熟是吧差不多几年前有个叫阿尔伯特-爱因斯坦的犹太人也在瑞士伯尔尼的专利局里获得了同样的一份工作,所以说隐藏着绝世高手的职业不仅有图书馆管理员,抄写员也是。

过了一段时间拉马努强或许是觉得一个人研究有些无聊,于是给剑桥大学发了一长串复杂的定理,三一学院的院士、当时数学界影响力巨大的英国分析学派的扛把子哈代教授从定理中看到了智慧的光芒,将他从印度带到剑桥,然后 讲了他还没彻底搞定的广相场方程,希尔伯特后就先于爱因斯坦本人推出了场方程作用量的形式。

费马定理与怀尔斯

1637年,被称为业余数学家之王的法国人皮埃尔-德-费马在他的笔记本上写道:不可能将一个立方数写成两个立方数之和;或者将一个4次幂写成两个4次幂之和;或者,总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。

这个喜欢恶作剧的天才,又在后面写下一个附加的评注:我有一个对这个命题的十分美妙的证明,这里空白太小,写不下。

费马死后,他的儿子意识到这些草草写就的自己或许有其价值,用了五年时间将其印刷刊出,这些被侥幸发现的蛛丝马迹成了其后所有数学家的不幸。一个高中生就可以理解的定理,成了数学界最大的悬案,从此将那些世界上最聪明的头脑整整折磨了358年。一代又一代的数学天才前赴后继,向这一猜想发起挑战。费马大定理本身从提出到证明的过程,就是一部不折不扣的惊险小说。寻求费马大定理证明的过程,牵动了这个星球上最有才智的人,充满绝望的反抗、意外的转机、隐忍的耐心、灿烂的灵性。

欧拉,18世纪最伟大的数学家之一,在那本特殊版本的《算术》中别的地方,发现费马隐蔽地描述了对4次幂的一个证明。欧拉将这个含糊不清的证明从细节上加以完善,并证明了3次幂的无解。但在他的突破之后,仍然有无数多次幂需要证明。

等到索非-热尔曼、勒让德、狄利克雷、加布里尔-拉梅等几个法国人再次取得突破时,距离费马写下那个定理已经过去了将近200年,而他们才仅仅又证明了5次幂和7次幂。

事实上拉梅已经宣布他差不多就要证明费马大定理了,另一位数学家柯西也紧随其后说,要发表一个完整的证明。然而,一封来信粉碎了他们的信心:德国数学家库默尔看出这两个法国人正在走向同一条逻辑的死胡同。

在让两位数学家感到羞耻的同时,库默尔也证明了费马大定理的完整证明是当时的数学方法不可能实现的。这是数学逻辑的光辉一页,也是对整整一代数学家的巨大打击。

20世纪,数学开始转向各种不同的研究领域并取得非凡进步。1908年,德国实业家沃尔夫斯凯尔为未来可能攻克费马大定理的人设立了奖金,但是,一位不出名的数学家却似乎毁灭了大家的希望:因为这个问题是如此困难,提出不完备性定理的哥德尔甚至怀疑这是一个在现有算术公理体系中无法解决的问题。

尽管有哥德尔致命的警告,尽管经受了三个世纪壮烈的失败,但一些数学家仍然冒着白白浪费生命的风险,继续投身于这个问题。二战后随着计算机的出现,大量的计算已不再成为问题。借助计算机的帮助,数学家们对500以内,然后在1000以内,再是10000以内的值证明了费马大定理,到80年代,这个范围提高到25000,然后是400万以内。

但是,这种成功仅仅是表面的,即使那个范围再提高,也永远不能证明到无穷,不能宣称证明了整个定理。破案似乎遥遥无期。

1963年,年仅十岁的安德鲁-怀尔斯在一本名叫《大问题》的书中邂逅费马大定理,便知道自己永远不会放弃它,必须解决它。70年代,他正在剑桥大学研究椭圆方程,看来与费马大定理没什么关系。

此时,两位日本数学家已经提出谷山-志村猜想,将怀尔斯正在研究的椭圆方程与模形式统一在一起。看来也与费马大定理没什么关系。

80年代,几位数学家将17世纪最重要的问题与20世纪最有意义的问题结合在一起,找出了证明费马大定理的钥匙:只要能证明谷山-志村猜想,就自动证明了费马大定理。

曙光在前,但并没有人对黎明的到来抱有信心,谷山-志村猜想已经被研究了30年,都以失败告终,如今与费马大定理联系在一起,更是连最后的希没有了,因为,任何可能导致解决费马大定理的事情根据定义是根本不可能实现的——这几乎已成定论。

就连发现钥匙的关键人物肯-里贝特也很悲观,“我没有真的费神去试图证明它,甚至没有想到过要去试一下。”大多数其他数学家,包括安德鲁·怀尔斯的导师约翰-科茨,都相信做这个证明会劳而无功,“我必须承认我认为在我有生之年大概是不可能看到它被证明了。”

几乎所有人都已经放弃,除了安德鲁-怀尔斯。

怀尔斯放弃了所有与证明费马大定理无直接关系的工作,在完全保密的状态下,展开了一个人对这个困扰世间智者三百多年谜团的孤独挑战,妻子是唯一知道他在从事费马问题研究的人。

苦心孤诣的安德鲁-怀尔斯经过七年专心努力,完成了谷山-志村猜想的证明。1993年6月23日,剑桥牛顿研究所,他开始了本世纪最重要的一次数学讲座,每一个对促成费马大定理证明做出过贡献的人实际上都在现场的房间里,两百名数学家被惊呆了,他们看到的是,三百多年来第一次,费马的挑战被征服。

怀尔斯写上费马大定理的结论,然后转向听众,平和地说,“我想我就在这里结束。”会场上爆发出一阵持久的掌声,第二天,数学家第一次占据了报纸的头版头条。《人物》杂志将他与黛安娜王妃、奥普拉一起列为“本年度25位最具魅力者”之一,一家时装公司则请这位温文尔雅的天才为他们的新系列男装做了广告。

但事情并没有在这里结束,接下来的发展依然像惊险小说一样,悬案得破,但案犯并不轻易束手就擒。怀尔斯长达200页的手稿投交到《数学发明》杂志,开始了庞杂的审稿过程。这是一个特大型的论证,由数以百计的数学计算通过数以千计的逻辑链环错综复杂地构造而成。只要有一个计算出差错或一个链环没衔接好,整个证明将可能失去其价值。

值得解决的问题会以反击来证明它自己的价值。在苛刻的审稿过程中,审稿人碰到了一个似乎是小问题的问题。而这个问题的实质是,无法使怀尔斯像原来设想的那样保证某个方法行得通。他必须加强他的证明。

时间越耗越长,问题依然解决不了,全世界开始对怀尔斯产生怀疑。14个月的时间过去了,他准备公开承认失败并发表一个证明有缺陷的声明。在山穷水尽的最后时刻,1995年9月19日,一个星期一的早晨,他决定最后检视一次,试图确切地判断出那个方法不能奏效的原因。

一个突然迸发的灵感使他的苦难走到了尽头:虽然那个方法不能完全行得通,但只需要可以使另一个他曾经放弃的理论奏效,正确答案就可以出现在废墟之中——两个分别不足以解决问题的方法结合在一起,就可以完美地互相补足。

足足有20分钟,怀尔斯呆望着那个结果不敢相信,然后,是一种再也无事可做的巨大失落感。一百年前,专为费马大定理而设的沃尔夫斯凯尔奖将截止日期定为2007年9月13日。就像所有的惊险片一样,炸弹在即将起爆的最后一刻,被拆除了。

这个故事和中国人所熟悉的陈景润与哥德巴赫猜想的故事如出一辙,可惜的是陈景润只是将哥德巴赫猜想的证明往前推进了一大步而并未完成最终证明,安德鲁-怀尔斯却将费马大定理彻底解决。

偏微分的研究

什么是偏微分方程?简单的说就是一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程;如果如果未知函数和几个变量有关,而且方程中出现未知函数对应几个变量的导数,那么这种微分方程就是偏微分方程。

偏微分的研究始于数学史上最多产的数学家欧拉,据说这位大神一年能写八百页的论文,这码字速度远远超过愤怒的香蕉和志鸟村,人家写的还是专业论文。

他在自己的论文中提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程,这些著作当时没有引起多大注意。

接着大神伯努利和傅里叶等人在这一领域进行了更多的研究,直接导致了数学物理方程这一分支的建立。傅里叶的著名论文《热的理论解析》听起来像是物理论文,但却成为数学史上的经典论文之一。

然后格林在剑桥建立了数学物理学派,他培育了汤姆逊、麦克斯韦等大神,他们使用偏微分作为求解重要物理问题的屠龙宝刀,并取得巨大进展,麦克斯韦轰动世界的电磁场方程就是这一学派的辉煌胜利。

爱因斯坦在谈起这段历史的时候说道,“偏微分方程进入到物理学的时候不过是婢女,现在却成了主母!”。

到了今天偏微分已经成为研究物理化学的基础,可以说如果你不懂这个,那么你就几乎没有在物理化学上取得成就的可能。

一般的数学论文可以分为四个板块,第一板块是前言,先简单说明一下自己这篇文章写的是什么,然后讲讲问题背景(比如说关于这个问题拉克斯研究到什么程度,陶哲轩有什么看法,还有那些问题没有解决),再往后就是自己解决了什么问题。

第二板块是序言,一般而言,这里面介绍你要用到的工具,比如各种定义,公理。

第三板块就是你的证明或者解题过程,整篇论文的精华就在这里了,要求条理清楚、逻辑严密,绝对不要出现一丝漏洞。

最后一个部分就是你做出的这个成果有什么用了,这部分可以写也可以不写,因为数学研究到现在这个阶段,很多数学家都是因为兴趣而进行研究,他们也不清楚自己研究出来的东西有神马用。更多的可能是这篇论文的结论可能没什么卵用,但是解题的过程却能带来科学的巨大进步。

还有一个是杜撰的 不过很凄美

心型线

1649年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。几天后,他意外的接到通知,国王聘请他做小公主的数学老师。跟随前来通知的侍卫一起来到皇宫,他见到了在街头偶遇的女孩子。从此,他当上了小公主的数学老师。”

公主的数学在笛卡尔的悉心指导下突飞猛进,每天形影不离的相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,小公主克里斯汀苦苦哀求后,国王将其流放回法国,克里斯汀公主也被父亲软禁起来。”

“笛卡尔回法国后不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:ra1-nθ。国王看不懂,觉得他们俩之间并不是总是说情话的,将全城的数学家召集到皇宫,但没有一个人能解开,他不忍心看着心爱的女儿整日闷闷不乐,就把这封信交给一直闷闷不乐的克里斯汀

我最喜欢的 四色猜想

这一定理通俗的说法是:每个平面地图都可以只用四种颜色来染色,而且没有两个邻接的区域颜色相同。

听起来很简单不是么?当这一猜想提出的时候大家也都这么认为,那些心高气傲的数学家不屑于在如此简单的问题上花费精力,直到哥廷根学派的重要人物、爱因斯坦的老师、为广义相对论做出突出贡献的闵可夫斯基注意到了这个问题。一次拓扑课上,闵可夫斯基向学生们自负的宣称,“这个定理没有证明的最要的原因是至今只有一些三流的数学家在这上面花过时间。下面我就来证明它。”

然后……,这节课结束的时候,没有证完;到下一次课的时候,闵可夫斯基继续证明,还是没有搞定。

一直几个星期过去了……一个阴霾的早上,闵可夫斯基跨入教室,那时候,恰好一道闪电划过长空,雷声震耳;他很严肃的说,“上天被我的骄傲激怒了,我的证明是不完全的……”

1942年的时候,莱夫谢茨去哈佛大学做了个报告,伯克霍夫是他的好朋友,讲座结束之后,就问他最近在普林斯顿大学有没有什么有意思的东西。莱夫谢茨说有一个人刚刚证明了四色猜想。伯克霍夫严重的不相信,说要是这是真的,就用手和膝盖,直接爬到普林斯顿的数学系大楼去。

几十年间,数学界对四色定理的观感竟发生了如此大的变化;直到1976年,美国数学家阿佩尔和哈肯,在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,最终证明了四色定理,轰动了世界。

《数学的故事》里面说到了数学家笛卡尔的爱情故事。笛卡尔于1596年出生在法国,欧洲大陆爆发黑死病时他流浪到瑞典,

1656年(另一说笛卡尔1650年逝世),斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。几天后,他意外的接到通知,国王聘请他做小公主的数学老师。跟随前来通知的侍卫一起来到皇宫,他见到了在街头偶遇的女孩子。从此,他当上了小公主的数学老师。

小公主的数学在笛卡尔的悉心指导下突飞猛进,笛卡尔向她介绍了自己研究的新领域--直角坐标系。每天形影不离的相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,小公主克里斯汀苦苦哀求后,国王将其流放回法国,克里斯汀公主也被父亲软禁起来。

笛卡尔回法国后

不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只

有短短的一个公式:r=a(1-sinθ)。国王看不懂,觉得他们俩之间并不是总是说情话的,将全城的数学家召集到皇宫,但没有一个人能解开,他不忍心看

着心爱的女儿整日闷闷不乐,就把这封信交给一直闷闷不乐的克里斯汀。

公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。这也就是著名的“心形线”。

国王死后,克里斯汀登基,立即派人在欧洲四处寻找心上人,无奈斯人已故,先她一步走了,徒留她孤零零在人间

据说这封享誉世界的另类情书还保存在欧洲笛卡尔的纪念馆里。

著名的心形线故事 超浪漫的哈 笑

可以表白的数学公式:128根号e980、[(n+528)×5–39343]÷05-10×n、X2+(y+3√X2)2=1、r=a(1-cosθ)或r=a(1+cosθ)、x2+(y-3√x2)2=1。

1、128根号e980

I Love You的数学公式最早来源于韩国歌手Kwill的一首MV,叫《I need you》。女孩在黑板上写了一个数学公式“128根号e980”,让男主角解答,男主角冥思苦想都算不出来,于是女孩拿起刷子擦掉公式的上半部分,就变成了英文的 I Love You。

2、[(n+528)×5–39343]÷05-10×n ( N=任意数)

一个任意实数,加528,结果乘以5,再减34343结果乘以2,最后减去这个数的10倍。

3、X2+(y+3√X2)2=1

画出函数图像来,是一个心。

4、r=a(1-cosθ)或r=a(1+cosθ)(a>0)水平方向

心形线

5、x2+(y-3√x2)2=1

数轴上形成一颗爱心,这就是数学系的专属“爱心曲线”

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/lianai/9013514.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-02
下一篇2023-10-02

发表评论

登录后才能评论

评论列表(0条)

    保存