2心轴——工作中承受弯距而不传递转矩的轴(固定心轴、转动心轴)
3传动轴——工作中只传递转矩而不承受弯矩或很小弯矩的轴
轴的强度计算,尤其是转轴和心轴的强度计算,通常是在初步完成轴的结构设计之后进行的。对于不同受载和应力性质的轴,应采用不同的计算方法。其中传动轴按扭转强度计算;心轴按弯曲强度计算;转轴按弯扭合成强度进行计算。
1传动轴的强度计算
传动轴工作时受扭,由材料力学知,圆截面轴的抗扭强度条件为
液压动力头岩心钻机设计与使用
计算轴的直径时,式(2-13)可以写成
液压动力头岩心钻机设计与使用
式中:τT为轴的扭应力,MPa;T为轴传递的转矩,N·mm;WT为轴的抗扭截面系数,mm3;P为轴传递的功率,kW;n为轴的转速,r/min;d为轴的直径,mm;[τ]T为轴材料的许用扭应力,MPa,见表2-8;C为与轴材料有关的系数,见表2-8。
表2-8 轴常用材料的[τ]T值和C值
注:1当弯矩作用相对于转矩很小或只传递转矩时,[τ]T取较大值,C取较小值;反之,[τ]T取较小值,C取较大值。
2当用35SiMn钢时,[τ]T取较小值,C取较大值。
按式(2-14)求得的直径,还应考虑轴上键槽会削弱轴的强度。一般情况下,开一个键槽,轴径应增大3%;开两个键槽,增大7%,然后取标准直径。
在转轴的设计中,常用式(2-14)作结构设计前轴径的初步估算,把估算的直径作为轴上受扭段的最细直径(有时也可作轴的最细直径)。对于弯矩的影响,常采用降低许用扭应力的方法予以修正,见表2-8注。
2心轴的强度计算
在一般情况下,作用在轴上的载荷方向不变,故心轴的抗弯强度条件为
液压动力头岩心钻机设计与使用
计算轴的直径时,式(2-15)可以写成
液压动力头岩心钻机设计与使用
式中:d为轴的计算直径,mm;M为作用在轴上的弯矩,N·mm;W为轴的抗弯截面系数,mm3;[σ]W为轴材料的许用弯曲应力,MPa。轴固定时,若载荷长期作用,取静应力状态下的许用弯曲应力[σ+1]W;若载荷时有时无,取脉动循环的许用弯曲应力[σ0]W。轴转动时,取对称循环的许用弯曲应力[σ-1]W。[σ+1]W、[σ0]W、[σ-1]W取值见表2-9。
表2-9 轴的许用弯曲应力(MPa)
注:σb为材料抗拉强度。
3转轴的强度计算
转轴的结构设计初步完成后,轴的支点位置及轴上所受载荷的大小、方向和作用点均为已知。此时,即可求出轴的支承反力,画出弯矩图和转矩图,按弯曲和扭转合成强度条件计算轴的直径。
轴的支点位置,对于滑动轴承和滚动轴承都不全是在轴承宽度的中点上,其中滑动轴承可按表2-10确定,滚动轴承可查轴承样本或有关手册。但是,为了简化计算,通常均可将支点位置取在轴承宽度的中点上。
表2-10 滑动轴承支点位置的确定
由弯矩图和转矩图可初步判断轴的危险截面。根据危险截面上产生的弯曲应力σW和扭应力为τT,可用第三强度理论求出钢制轴在复合应力作用下危险截面的当量弯曲应力σeW,其强度条件为
液压动力头岩心钻机设计与使用
对于一般转轴,σW为对称循环变应力;而τT的循环特性则随转矩T的性质而定。考虑弯曲应力与扭应力变化情况的差异,将上式中的转矩T乘以校正系数α,即
液压动力头岩心钻机设计与使用
式中:Me为当量弯矩, α为应力校正系数,对于不变的转矩,取 对于脉动循环的转矩, 对于对称循环的转矩,取 为脉动循环时材料的许用弯曲应力,见表2-9。
计算轴的直径时,式(2-16)可以写成
液压动力头岩心钻机设计与使用
式中:d为轴的计算直径,mm;Me为当量弯矩,N·mm;[σ-1]W为对称循环下的材料的许用弯曲应力,MPa。
轴上有键槽时,为了补偿对轴强度的削弱,按式(2-19)求得的直径应增大4%~7%,单键槽时取较小值,双键槽时取较大值。
综上所述,常用转轴的设计步骤是:先按照转矩估算轴径,作为轴上受扭段的最细直径;再按照结构设计的要求,进行轴的初步结构设计,确定轴的外形和尺寸;然后按弯扭合成强度条件校核轴的直径。若初定轴的直径较小,不能满足强度要求,则需修改结构设计,直到满足强度要求为止;若初定轴的直径较大,一般先不修改设计,通常是在计算完轴承后再综合考虑是否修改设计。
对于一般用途的轴,按照上述方法设计计算即能满足使用要求。对于重要的轴,尚须考虑应力集中、表面状态以及尺寸的影响,用安全系数法作进一步的强度校核,其计算方法见有关机械设计教材或参考书。
计算有以下三个公式:
1,M=N/ω(扭矩等于功率除以角速度)
2,M=Jα (扭矩等于转动惯量乘以角加速度)
3,M=FL (扭矩等于力乘以力距)
额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿・米(N・m)。
工程技术中也曾用过公斤力・米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=955KeIK 。
扩展资料机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系。
转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n或T=P/Ω(Ω为角速度,单位为rad/s)。
-转矩
仅供参考
一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=17KN;带速V=14m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=096×0992×097×099×095
=086
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×14/1000×086
=276KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×14/π×220
=1215r/min
根据2表22中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×1215=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由2表81查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 79 3 263
2 Y100l2-4 3 1500 1420 1168 3 389
综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩22。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/1215=1168
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=1168/3=389
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=47333(r/min)
nII=nI/i齿=47333/389=12167(r/min)
滚筒nw=nII=47333/389=12167(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=276×096=264KW
PII=PI×η轴承×η齿轮=264×099×097=253KW
3、 计算各轴转矩
Td=955Pd/nm=9550×276/1420=1856Nm
TI=955p2入/n1 =9550x264/47333=5326Nm
TII =955p2入/n2=9550x253/12167=19858Nm
五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=12 P=276KW
PC=KAP=12×276=33KW
据PC=33KW和n1=47333r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-002)=27930 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=706m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+314(95+280)+(280-95)2/4×450
=16058mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-16058)/2
=497mm
(4) 验算小带轮包角
α1=1800-5730 ×(dd2-dd1)/a
=1800-5730×(280-95)/497
=158670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率据dd1和n1,查课本图10-9得 P1=14KW
i≠1时单根V带的额定功率增量据带型及i查[1]表10-2得 △P1=017KW
查[1]表10-3,得Kα=094;查[1]表10-4得 KL=099
Z= PC/[(P1+△P1)KαKL]
=33/[(14+017) ×094×099]
=226 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=01kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(25/Kα)-1]+qV2=500x33/[3x706(25/094-1)]+010x7062 =1343kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×1343sin(15867o/2)
=7919N
2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3
确定有关参数如下:传动比i齿=389
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=778取z2=78
由课本表6-12取φd=11
(3)转矩T1
T1=955×106×P1/n1=955×106×261/47333=52660Nmm
(4)载荷系数k : 取k=12
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×47333×10×300×18=136x109
N2=N/i=136x109 /389=34×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=105
按一般可靠度要求选取安全系数SHmin=10
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x105/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3
=4904mm
模数:m=d1/Z1=4904/20=245mm
取课本[1]P79标准模数第一数列上的值,m=25
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=25×20mm=50mm
d2=mZ2=25×78mm=195mm
齿宽:b=φdd1=11×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=435,YFS2=395
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=7186pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=7261Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=1225mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=314×47333×50/60×1000=123m/s
因为V<6m/s,故取8级精度合适.
六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(253/12167)1/3mm=3244mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=955×106P/n=955×106×253/12167=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表94可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定右端轴承型号与左端轴承相同,取d6=45mm
(4)选择轴承型号由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm
II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=19858Nm
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×19858/195=203N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Fttanα=203×tan200=0741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm
(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=074/2=037N
FAZ=FBZ=Ft/2=203/2=101N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=037×96÷2=1776Nm
截面C在水平面上弯矩为:
MC2=FAZL/2=101×96÷2=4848Nm
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17762+48482)1/2=5163Nm
(5)绘制扭矩图(如图e)
转矩:T=955×(P2/n2)×106=19858Nm
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=02,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51632+(02×19858)2]1/2=6513Nm
(7)校核危险截面C的强度
由式(6-3)
σe=6513/01d33=6513x1000/01×453
=714MPa< [σ-1]b=60MPa
∴该轴强度足够。
主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(264/47333)1/3mm=2092mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=955×106P/n=955×106×264/47333=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=5326Nm
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×5326/50=213N
④求径向力Fr根据课本P127(6-35)式得
Fr=Fttanα=213×036379=076N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=076/2=038N
FAZ=FBZ=Ft/2=213/2=1065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=038×100/2=19Nm
(3)截面C在水平面弯矩为
MC2=FAZL/2=1065×100/2=525Nm
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+5252)1/2
=5583Nm
(5)计算当量弯矩:根据课本P235得α=04
Mec=[MC2+(αT)2]1/2=[55832+(04×5326)2]1/2
=5974Nm
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(01d3)=5974x1000/(01×303)
=2212Mpa<[σ-1]b=60Mpa
∴此轴强度足够
(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=315KN, 基本静载荷CO=205KN,
查[2]表101可知极限转速9000r/min
(1)已知nII=12167(r/min)
两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=063FR 则FS1=FS2=063FR1=063x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =063
FA2/FR2=682N/1038N =063
根据课本P265表(14-14)得e=068
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=15
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=15×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 15×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X12167=998953h>48000h
∴预期寿命足够
二主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=195KN,基本静载荷CO=1115KN,
查[2]表101可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=47333(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=063FR 则FS1=FS2=063FR1=063x1129=7118N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=7118N FA2=FS2=7118N
(3)求系数x、y
FA1/FR1=7118N/7118N =063
FA2/FR2=7118N/7118N =063
根据课本P265表(14-14)得e=068
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=15
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=15×(1×1129+0)=16935N
P2=fp(x2FR1+y2FA2)=15×(1×1129+0)= 16935N
(5)轴承寿命计算
∵P1=P2 故取P=16935N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/16935)3/60X47333=53713h>48000h
∴预期寿命足够
七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=79432N
挤压强度: =5693<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =3660<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。
八、减速器箱体、箱盖及附件的设计计算~
1、减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×15
油面指示器
选用游标尺M12
起吊装置
采用箱盖吊耳、箱座吊耳
放油螺塞
选用外六角油塞及垫片M18×15
根据《机械设计基础课程设计》表53选择适当型号:
起盖螺钉型号:GB/T5780 M18×30,材料Q235
高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235
低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱体的主要尺寸:
:
(1)箱座壁厚z=0025a+1=0025×1225+1= 40625 取z=8
(2)箱盖壁厚z1=002a+1=002×1225+1= 345
取z1=8
(3)箱盖凸缘厚度b1=15z1=15×8=12
(4)箱座凸缘厚度b=15z=15×8=12
(5)箱座底凸缘厚度b2=25z=25×8=20
(6)地脚螺钉直径df =0036a+12=
0036×1225+12=1641(取18)
(7)地脚螺钉数目n=4 (因为a<250)
(8)轴承旁连接螺栓直径d1= 075df =075×18= 135 (取14)
(9)盖与座连接螺栓直径 d2=(05-06)df =055× 18=99 (取10)
(10)连接螺栓d2的间距L=150-200
(11)轴承端盖螺钉直d3=(04-05)df=04×18=72(取8)
(12)检查孔盖螺钉d4=(03-04)df=03×18=54 (取6)
(13)定位销直径d=(07-08)d2=08×10=8
(14)dfd1d2至外箱壁距离C1
(15) Dfd2
(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。
(17)外箱壁至轴承座端面的距离C1+C2+(5~10)
(18)齿轮顶圆与内箱壁间的距离:>96 mm
(19)齿轮端面与内箱壁间的距离:=12 mm
(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm
(21)轴承端盖外径∶D+(5~5.5)d3
D~轴承外径
(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2
九、润滑与密封
1齿轮的润滑
采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。
2滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
3润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
4密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB8941-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。
十、设计小结
课程设计体会
课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!
课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。
十一、参考资料目录
[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;
[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版
弯矩和扭矩都是力矩的一种,都是描述内力的,区别就是方向不同。
双手扳筷子就是产生弯矩,拧毛巾就是产生扭矩。
方向:弯矩是在轴线所在平面内,扭矩是在垂直于轴线的平面内。
具体:对于刚体(不考虑变形),一个截面上的内力可以合并为一个合力和一个合力偶。杆件截面分布的应力可以分解为切应力和正应力。
切应力合并的合力、合力偶就是剪力和扭矩。
类似的,正应力的作用效果就合并为轴力和弯矩
这个知识点在材料力学(简单的弹性力学)中,就是把外在的效果:拉压、剪切、受弯、受扭还原成切应力和剪应力来分析变形。
比如一根筷子,你握住两端施力使它变弯,这是弯矩的效果;一根轴带动皮带轮转动,这根轴承受扭矩作用。本质上,无论弯矩、扭矩都属于力矩,本质一样,所以单位必定一样。但是作用效果不同:弯矩引起弯曲变形,引起横截面绕中性轴旋转;扭矩引起扭转变形,引起横截面绕杆件的纵轴旋转。对于这种宏观的力,就是力学家为方便理解而从微观总结到宏观的一种东西。实际存在的只有应变而已。具体到弯矩、扭矩、轴力就是比较常见的几种特定应变(力)流在特定截面宏观化的体现。首先明确它们的共同方面
(1)它们是力矩, 也叫力偶矩
(2)它们是内力矩, 就是应力的力矩的积分
(3)它们是杆件的内力 (通常说的内力包括内力和内力矩) 明确了杆件以后, 多数情况下容易确定横截面, 于是有了截面法线 那么, 内力力矩在法线的分量是扭矩, 余下部分, 即在截面上的部分, 是弯矩。弯矩是起床,扭矩是翻身,差距还是蛮大的,弯曲和扭转都是指的细长杆件,杆件的定义一个方向的尺寸远大于另外两个方向的物体,弯曲作用在最长的轴线上,扭转作用在垂直于这个轴线的平面上。如果不是杆件那就不是弯曲和扭转的问题了,那是板壳理论的问题,就是弹性力学的问题,需要联立几何方程物理方程平衡协调方程并考虑边界条件求解了,把握住概念。两个力作用效果就不同,弯矩的原因可以等效成一个集中力或力偶,扭矩只能等效成扭矩或切应力。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)