1用单位荷载法求两截面的相对转角时,所设单位荷载应是(力矩) 。2力矩分配法的理论基础是(杠杆原理) 。4力矩分配法计算内力时,当远端为铰支座时,杆的弯矩传递系数为(线性)。当远端为固定支座时,杆的弯矩传递系数为( 非线性) 。当远端为滑动支座时,杆的弯矩传递系数为 (0)。5下图所示结构,利用位移法求解时,当 为无限大时,基本未知量为 , , 。6结构的类型多种多样,就几何特征区分,有 (几何可变体)、(几何不变体) 和 (几何瞬变体)三类。7桁架中内力为零的杆件称为(零杆) 。8在工程中,静定结构的典型结构型式为( 简支结构 和悬臂结构) 。9超静定结构最基本的计算方法有两种,即(力法) 和 (位移法),位移法是(矩阵计算)派生出来的方法。10梁的内力包络图有(弯矩 和 剪力)。11为了分析方便,通常将位于影响线顶点的集中荷载称为(最不利荷载) 。12力矩分配法的理论基础是(杠杆原理) 。13对称结构在对称荷载作用下,弯矩图 ,轴力图 ,剪力图 (轴力图正对称,其他反对称)。14图示结构的几何构造为 。15图示结构水平杆件的轴力为 。16力矩分配法中,杆端的转动刚度当远端为固定支座时为(与之相同) ,当远端为铰支座时为(减小) ,当远端为定向支座时为 (减小)。可能有的不对,有的概念不记得了。
刚度是指材料或结构在受力时抵抗弹性变形的能力。是材料或结构弹性变形难易程度的表征。材料的刚度通常用弹性模量E来衡量。在宏观弹性范围内,刚度是零件荷载与位移成正比的比例系数,即引起单位位移所需的力。它的倒数称为柔度,即单位力引起的位移。刚度可分为静刚度和动刚度。
刚度是使物体产生单位变形所需的外力值。刚度与物体的材料性质、几何形状、边界支持情况以及外力作用形式有关。材料的弹性模量和剪切模量(见材料的力学性能)越大,则刚度越大。细杆和薄板在受侧向外力作用时刚度很小,但细杆和薄板如果组合得当,边界支持合理,使杆只承受轴向力,板只承受平面内的力,则它们也能具有较大的刚度。
在自然界,动物和植物都需要有足够的刚度以维持其外形。在工程上,有些机械、桥梁、建筑物、飞行器和舰船就因为结构刚度不够而出现失稳,或在流场中发生颤振等灾难性事故。因此在设计中,必须按规范要求确保结构有足够的刚度。但对刚度的要求不是绝对的,例如,弹簧秤中弹簧的刚度就取决于被称物体的重量范围,而缆绳则要求在保证足够强度的基础上适当减小刚度。
研究刚度的重要意义还在于,通过分析物体各部分的刚度,可以确定物体内部的应力和应变分布,这也是固体力学的基本研究方法之一。
计算公式
一个结构的刚度(k)是指弹性体抵抗变形拉伸的能力。计算公式:
k=P/δ
P是作用于结构的恒力,δ是由于力而产生的形变。
刚度的国际单位是牛顿每米(N/m)
转动刚度
转动刚度(k)为:k=M/θ
其中,M为施加的力矩,θ为旋转角度。
转动刚度的国际单位为牛米每弧度。
转动刚度还有一个常用的单位为英寸磅每度。
其他的刚度包括:
拉压刚度(Tension and compressionstiffness)
轴力比轴向线应变(EA)
剪切刚度(shear stiffness)
剪切力比剪切应变(GA)
扭转刚度(torsional stiffness)
扭矩比扭应变(GI)
弯曲刚度(bending stiffness)
弯矩比曲率(EI)
材料力学中的EA指的是抗拉压刚度(其中E为弹性模量,A为截面面积)抗拉刚度是构件在拉力的作用下,抵抗变形的能力,对长度相同,受力相同的杆件,EA越大则变形越小,亦称之为抗压刚度。
零件在载荷作用下抵抗弹性变形的能力。零件的刚度(或称刚性)常用单位变形所需的力或力矩来表示,刚度的大小取决于零件的几何形状和材料种类(即材料的弹性模量)。刚度要求对于某些弹性变形量超过一定数值后,会影响机器工作质量的零件尤为重要,如机床的主轴、导轨、丝杠等。
扩展资料
材料力学的研究内容包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。
杆件按受力和变形可分为拉杆、压杆(见柱和拱)、受弯曲(有时还应考虑剪切)的梁和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为三类:
①线弹性问题。在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。
对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形(或内力),可先分别求出各外力单独作用下杆件的变形(或内力),然后将这些变形(或内力)叠加,从而得到最终结果。
②几何非线性问题。若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。
③物理非线性问题。在这类问题中,材料内的变形和内力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。在几何非线性问题和物理非线性问题中,叠加原理失效。解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法等。
在许多工程结构中,杆件往往在复杂载荷的作用或复杂环境的影响下发生破坏。例如,杆件在交变载荷作用下发生疲劳破坏,在高温恒载条件下因蠕变而破坏,或受高速动载荷的冲击而破坏等。
这些破坏是使机械和工程结构丧失工作能力的主要原因。所以,材料力学还研究材料的疲劳性能、蠕变性能和冲击性能。
刚度是什么意思 刚度系数
拼音: [gāng dù]
英文: Stiffness
类别: 物理名词
释义: 刚度是指材料或结构在受力时抵抗弹性变形的能力。是材料或结构弹性变形难易程度的表征。材料的刚度通常用弹性模量E来衡量。在宏观弹性范围内,刚度是零件荷载与位移成正比的比例系数,即引起单位位移所需的力。它的倒数称为柔度,即单位力引起的位移。刚度可分为静刚度和动刚度。
基本介绍
刚度是使物体产生单位变形所需的外力值。刚度与物体的材料性质、几何形状、边界支持情况以及外力作用形式有关。材料的弹性模量和剪切模量(见材料的力学性能)越大,则刚度越大。细杆和薄板在受侧向外力作用时刚度很小,但细杆和薄板如果组合得当,边界支持合理,使杆只承受轴向力,板只承受平面内的力,则它们也能具有较大的刚度。
在自然界,动物和植物都需要有足够的刚度以维持其外形。在工程上,有些机械、桥梁、建筑物、飞行器和舰船就因为结构刚度不够而出现失稳,或在流场中发生颤振等灾难性事故。因此在设计中,必须按规范要求确保结构有足够的刚度。但对刚度的要求不是绝对的,例如,弹簧秤中弹簧的刚度就取决于被称物体的重量范围,而缆绳则要求在保证足够强度的基础上适当减小刚度。
研究刚度的重要意义还在于,通过分析物体各部分的刚度,可以确定物体内部的应力和应变分布,这也是固体力学的基本研究方法之一。
静刚度与动刚度概述
静载荷下抵抗变形的能力称为静刚度。动载荷下抵抗变形的能力称为动刚度,即引起单位振幅所需的动态力。如果干扰力变化很慢(即干扰力的频率远小于结构的固有频率),动刚度与静刚度基本相同。干扰力变化极快(即干扰力的频率远大于结构的固有频率时),结构变形比较小,即动刚度比较大。当干扰力的频率与结构的固有频率相近时,有共振现象,此时动刚度最小,即最易变形,其动变形可达静载变形的几倍乃至十几倍。
构件变形常影响构件的工作,例如齿轮轴的过度变形会影响齿轮啮合状况,机床变形过大会降低加工精度等。影响刚度的因素是材料的弹性模量和结构形式,改变结构形式对刚度有显着影响。刚度计算是振动理论和结构稳定性分析的基础。在质量不变的情况下,刚度大则固有频率高。静不定结构的应力分布与各部分的刚度比例有关。在断裂力学分析中,含裂纹构件的应力强度因子可根据柔度求得。
基本公式
k=P/δ
其中 k表示刚度, P表示施力,δ表示变形量(变形后的长度减去原长或原长减去变形后的长度)。在国际单位制中,刚度的单位为牛/米。一般应用于胡克定律作系统的振动分析。
刚度的位移
计算刚度的理论分为小位移理论和大位移理论。大位移理论根据结构受力后的变形位置建立平衡方程,得到的结果精确,但计算比较复杂。小位移理论在建立平衡方程时暂时先假定结构是不变形的,由此从外载荷求得结构内力以后,再考虑变形计算问题。大部分机械设计都采用小位移理论。例如,在梁的弯曲变形计算中,因为实际变形很小,一般忽略曲率式中的挠度的一阶导数,而用挠度的二阶导数近似表达梁轴线的曲率。这样做的目的是将微分方程线性化,以大大简化求解过程;而当有几个载荷同时作用时,可分别计算每个载荷引起的弯曲变形后再叠加。
刚度的弹性模量
一般来说,刚度和弹性模量是不一样的。弹性模量是物质组分的性质;而刚度是结构的性质。也就是说,弹性模量是物质微观的性质,而刚度是物质宏观的性质。
材料力学中,弹性模量与相应截面几何性质的乘积表示为各类刚度,如GI为扭转刚度,EI为弯曲刚度,EA为拉压刚度。
刚度系数测量方法
一般采用实测的方法来确定轧机的刚度系数,实测的方法有两种。
①轧制法
②轧辊压靠法
由于轧机零部件间存在的间隙和接触不均匀是一个不稳定因素,弹性曲线的非线性部分是经常变化的,在实际生产中,为了消除非线性段的影响,往往采用人工零位法。即在轧前,先将轧辊预压靠到一定压力P0 (或按压下电机电流作标准),然后将此时的轧辊缝指示器读数设定为零,称为人工零位。
式中
S'0 ——人工零件位轧辊辊缝指示器读数;
P0 ——轧辊预压靠力。式中即为人工零位法的弹跳方程。用人工零位法可以消除非线性段的不稳定性,弹跳方程便于实际应用。弹跳方程对轧机调整有重要意义。它可以用来设定轧辊原始辊缝,弹跳方程表示了轧出厚度与辊缝及轧制力的关系,他可作为间接测量轧件厚度的基本公式。
刚度造句
1、连续梁的杆端转动刚度及其在力矩分配法中的应用。
2、而非支座结点在不同荷载步下的侧向位移则明显小于初始转动刚度较小的时候。
3、说明直线滚动导轨结合面的静、动刚度与阻尼对机床的动态特性具有很大的影响。
4、加固前后的荷载试验表明,碳纤维加固可有效提高结构的承载力,改善结构的动刚度。
5、摘要对某机床厂cks6116卧式数控机床导轨结合面的静、动刚度与阻尼等参数特性进行了研究。
6、因此有必要对半刚性钢-混凝土组合节点受弯承载力、转动刚度和转动能力及其对框架受力性能影响进行全面的研究。
7、总结了压缩型轨道减振器的各种性能的试验方法,包括刚度和变形、垂向升举、横向约束、纵向约束、疲劳、低频动刚度等试验。
8、文中给出了轴承的润滑方程、油膜扰动刚度和阻尼计算表达式,并进行了轴承的动态润滑特性参数计算。
9、试验结果表明,半刚性钢-混凝土组合节点具有较高的受弯承载能力与转动刚度,同时还具有良好的转动耗能能力。
10、摘要在对某型数控车床进行空运转、切削及模态试验的基础上,确定了机床主轴部件动刚度薄弱是引起机床切削的结构颤振方面的原因。
11、首次提出利用动力相互作用因子求解均质弹性半空间上的任意形状的刚性明置和埋置基础的动刚度和阻尼系数的方法。
一般来说,刚度和弹性模量是不一样的。弹性模量是物质组分的性质;而刚度是固体的性质。也就是说,弹性模量是物质微观的性质,而刚度是物质宏观的性质。
材料力学中,弹性模量与横梁截面转动惯量的乘积表示为各类刚度,如GI 为抗扭刚度,EI 为抗弯刚度。
刚度:
刚度是指零件在载荷作用下抵抗弹性变形的能力。零件的刚度(或称刚性)常用单位变形所需的力或力矩来表示,刚度的大小取决于零件的几何形状和材料种类(即材料的弹性模量)。
各向同性材料的刚度取决于它的弹性模量E 和剪切模量G(见胡克定律)。结构的刚度除取决于组成材料的弹性模量外,还同其几何形状 、边界条件等因素,以及外力的作用形式有关。
刚度要求对于某些弹性变形量超过一定数值后,会影响机器工作质量的零件尤为重要,如机床的主轴、导轨、丝杠等。
强度:
金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。按外力作用的性质不同,主要有屈服强度、抗拉强度、抗压强度、抗弯强度等,工程常用的是屈服强度和抗拉强度,这两个强度指标可通过拉伸试验测出。
强度是衡量零件本身承载能力(即抵抗失效能力)的重要指标,是机械零部件首先应满足的基本要求。机械零件的强度一般可以分为静强度、疲劳强度(弯曲疲劳和接触疲劳等)、断裂强度、冲击强度、高温和低温强度、在腐蚀条件下的强度和蠕变、胶合强度等项目。
强度的试验研究是综合性的研究,主要是通过其应力状态来研究零部件的受力状况以及预测破坏失效的条件和时机。
在机械工程中,"转动自由度"是指物理系统可以进行旋转的自由度。而"刚度"是指物体在受到外力作用时抵抗形变的能力。根据常规理解,在机械系统中,转动自由度是有刚度的,这是因为在物体旋转时,通常会受到扭矩的作用,而扭矩会导致物体产生形变,即使是微小的形变也会需要一定的抵抗能力。因此,从常规意义上来说,转动自由度和刚度是相关的。
如果你在特定的背景或领域中使用了"转动自由度没有刚度"这个说法,可能需要查看相关文献或者提供更多背景信息来进一步讨论。
剪力静定杆指的是剪力可由投影平衡条件求出来的杆。
AB、BC杆均为剪力静定杆。两端无相对线位移的杆转动刚度、传递系数和固端弯矩确定,前面已经讨论过,下面讨论剪力静定杆的转动刚度、传递系数和固端弯矩确定。
1232 剪力静定杆的固端弯矩计算先由投影平衡条件求出杆端剪力,再将杆端剪力看作杆端荷载加在杆端,按该端滑动,另一端固定的单跨梁计算固端弯矩。1233 剪力静定杆的转动刚度 转动刚度:S=i,传递系数:C=-1。
扩展资料:
杆系结构按结点形式可分为:由直杆和铰结点组成的桁架,由杆和刚结点组成的刚架,以及两种结点并存的混合型构架,若桁架所受载荷只作用于结点,则各杆件只承受轴力(拉力或压力)。若结点构造不完全符合铰结要求,则杆件内虽以轴力为主,但还会产生少量的弯曲应力和剪应力,即所谓的次应力。刚架中的杆件主要承受力矩,但也承受轴力和剪力。
-杆系结构
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)