肱一头肌,肱二头肌,肱三头肌。

肱一头肌,肱二头肌,肱三头肌。,第1张

肱一头肌即肱肌肱,位于二头肌下半部分深层。

肱肌为上臂的屈肌,起自肱骨体下半的内外两面及内外侧肌间隔,止于尺骨粗隆的粗糙面,有屈肘、旋后功能。具有肌皮神经、桡神经双重神经支配。桡神经的肱肌支是桡神经在肘上向尺侧发出的肌支,该肌支行于肱肌与肱桡肌的肌间隙中,无血管伴行与纤维组织横跨。

肱三头肌生理学位置

位于上臂后面皮下,有三个头。长头起于肩胛骨盂下结节,外侧头起于肱骨体后面桡神经沟外上方,内侧头起于肱骨体后面桡神经沟内下方。三个头合成一个肌腹,以其腱止于尺骨鹰嘴。

其生理横断面为2260平方厘米。近固定时,使前臂在肘关节处伸,长头还使上臂在肩关节处伸,是使肘关节伸直的主要肌肉。远固定时,使上臂在肘关节处与前臂保持直伸(如手倒立推起动作)。

-肱二头肌,-肱肌,-肱三头肌

(1)图中2上有神经节,因此2是传入神经,能将神经冲动传至3神经中枢;因此1是感受器,能够接受刺激并能产生神经冲动.

(2)4是传出神经,能将来自3神经中枢的神经冲动传至5效应器.

(3)小明无意中手指突然碰到烫的东西,立即缩回手,这时神经冲动传导的途径是手上的1感受器→2传入神经→3神经中枢→4传出神经→5效应器(肱二头肌收缩,肱三头肌舒张)缩手.他在缩手后感觉到烫手了,此感觉是在大脑皮层的躯体感觉中枢产生的.

(4)神经元的基本结构包括细胞体和突起两部分,神经元的细胞体主要集中在脑和脊髓里,在脑和脊髓里,细胞体密集的地方,色泽灰暗,叫灰质;神经元的突起主要集中在周围神经系统里,在脑和脊髓里神经纤维汇集的部位,色泽亮白叫白质.因此在脑和脊髓中,由神经元的细胞体构成灰质,由神经纤维构成白质.图示中A为灰质,B为白质.因此在脊髓里,神经元的细胞体密集的部位是[A]灰质.

(5)图中所示的结构,该反射的神经中枢在脊髓,不需要大脑皮层的参与,因此属于非条件反射(简单反射).

故答案为:(1)1    感受器   

(2)4  传出神经   

(3)1→2→3→4→5  大脑皮层的躯体感觉中枢  

(4)A  灰质   

(5)简单反射

(1)完成反射的神经结构基础,称为反射弧,它由感受器、传入神经、视觉中枢、传出神经、效应器五部分组成. 

(2)简单反射是指人生来就有的先天性反射.是一种比较低级的神经活动,由大脑皮层以下的神经中枢(如脑干、脊髓)参与即可完成.膝跳反射、眨眼反射、缩手反射、婴儿的吮吸、排尿反射等都是简单反射.复杂反射是人出生以后在生活过程中逐渐形成的后天性反射,是在非条件反射的基础上,经过一定的过程,在大脑皮层参与下完成的,是一种高级的神经活动,是高级神经活动的基本方式.从图中可以看出从该反射弧模式图的结构特点是神经中枢在脊髓,脊髓的灰质在脊髓中央呈蝴蝶型,白质在周围.因此该反射弧所能完成的反射类型是简单反射.

(3)屈肘时,肱三头肌舒张,肱二头肌收缩,肌肉收缩所需的能量来自肌细胞进行呼吸作用,氧化分解有机物物释放的能量. 

故答案为:(1)[1]感受器;[4]传入神经;[2]传出神经

(2)非条件(简单)反射;    该反射弧的中枢在脊髓,完成的反射为非条件(简单)反射

(3)肱二头肌;  呼吸;   有机

位置与结构一肱三头肌

肱三头肌位于臂后面的皮下。肱三头肌三个头中的两个只跨越肘关节,而长头跨越肘关节和肩关节,这一肌肉对抗肱二头肌和肱肌。肱三头肌是一块有三个头或三个分支的、长的、宽广的肌肉,肌肉对尺骨和尺骨前臀的其中一块骨头的附着,使它成为伸直肘部的重要杠杆:肱三头肌是唯——块执行这个功能的肌肉。肱三头肌的长头附着于肩胛骨并参与协助稳固手臂。

起点:

长头:肩胛骨的盂下结节

后头:肱骨轴后面的上半部(桡骨头之上之后)。

中头:肱骨轴后面的下半部(桡骨头之下之间)

止点:尺骨鹰嘴突的后部。

功能

长头:伸肘,肩关节内收和后伸

外侧头:伸肘关节

内侧头:伸肘关节

神经与供血

神经:受桡神经支配

供血:受肱深动脉供血。

症状描述

疼痛部位:肩膀后面至手肘部疼痛、高尔夫肘、网球肘

1引起后肩部和外肘部的疼痛。当问题较严重时,还可引起上斜角肌和颈根部的关联痛。

2引起肘部外侧的疼痛,也是众所周知的“网球肘”的原因之一。疼痛可沿着前臀背侧向下转移一段距离

3引起上臂背侧的局部疼痛,它还能使外侧头紧缩继而 压迫桡神经,可引起前臀和手尺侧的麻木。

4引起肘部极端的触痛,因此常无法将肘部靠在桌面或椅背上。

5引起肘部内侧的关联痛,有时还会累及前臀内侧。有时候,人们将这个部位的疼痛表现称作“高尔夫肘”

6引起无名指和小手指的疼痛,前臀背侧和三头肌区域产生闷痛感以及肘关节无力,并限制它的弯曲和伸直。

7上述症状容易被误诊为关节炎、肌腱炎和滑囊炎。

所谓诊断是要查条件,任何条件的改变,结果一定会变。不要拿结果当诊断,不要拿受害者当凶手,几乎大多数现有的病名都是现象和结果,一切的现象和结果都是条件组合产生的。

诱因

长时间的抱小孩。

长时间的玩手机、使用平板电脑打游戏。

长时间使用鼠标,键盘工作玩游戏等。

打羽毛球、网球不注意前期的科学热身以及运动后的科学拉伸及整理工作。

肱三头肌的外侧头在三角肌的下面,臂外侧皮神经从它穿过,此处皮肤长癣或皮肤颜色的改变与它有关,肱三头肌和肱肌之间和肱桡肌之间,穿出来前臂后侧皮神经、桡神经。

先痛后麻:先有无菌性炎症刺激神经末梢引起肌痉挛,肌痉挛卡压周围神经,或卡压血管,远端可有肿胀表现,指压发紫或灰白(椎管外的)。

先麻后痛:(考虑椎管内的,但95%还是椎管外的)神经根出口受压,水肿引起的一系列的反应,后来有无菌性炎症产生,N→软组织。

每天早上起床啥事没有,活动到中午的时候或走一会儿,麻出现痛出现,到下午的时候加重,平躺好转→恻隐窝/椎管内。反之越走越减轻则是椎管外的,骶髂关节或者是软组织。夜里疼痛加剧,不麻就疼,白天减轻,赶紧查血沉,这大多数来自于骶髂关节深层的炎症,很多从腰疼开始,多数是无菌性炎症造成的,激素水平的变化引起的疼痛。夜里不疼白天疼,如果只是局限于疼痛,没有麻感,也是软组织的(95%)。妈妈手网球肘腕管综合征都要处理 喙肱肌 →冈下窝,斜角肌。

编辑:黄川琦

一、前言及神经元与胶质细胞

了解《神经生物学》的概念、主要内容:

分子生物学、发育神经生物学、神经系统生物学、系统神经生物学、行为神经生物学、比较神经生物学 (免疫系统衰退与寿命密切相关)

掌握神经元胞体结构和功能:

胞体的结构:核仁、细胞膜、细胞质、细胞核。胞体的细胞质称为核周质,含有较发达的粗面内质网、游离核糖体、微丝、神经丝、微管以及Golgi 复合体。

功能:胞体是神经元的代谢和营养中心,集中了几乎所有蛋白合成的装置。

胶质细胞:

中枢神经系统中的:星形胶质细胞、少突胶质细胞、小胶质细胞

周围神经系统中的:Schwann 细胞、卫星细胞

二、神经生理学基础

掌握神经纤维动作电位的特征:

动作电位只发生在阴极;

其大小不随刺激强度而变化;

遵循“全或无”定律;

动作电位可无衰减地传递。

掌握离子通道与门控电流:

离子通道的特性:

不同的离子通道是相互独立的

通道是孔洞而不是载体

离子通道的化学本质是蛋白质

孔洞大小、形成氢键的能力及通道内位点相互作用的强度与通道的通透性有关 离子通道的分类:

1)按通道门控的方式分类

电压门控通道

配体(/化学)门控通道

机械门控通道

门控电流的原理:

膜离子通道的开闭是一种完全受制于膜内的内在过程,是膜上通道蛋白的带电基团或偶极子在膜电位改变时,在电场作用下发生位移或转动,或重新分布,从而导致通道关闭。通道的开闭伴随有电荷移动,称为门控电流或闸门电流。

三、神经化学与神经药理学基础

1、电镜下的突触由三部分组成化学性突触: 是哺乳动物神经组织信息传递的主要形式,由突触前成分、突触后成分和突触间隙所构成,呈单向性传导 电突触: 由突触前膜、突触后膜和突触间隙组成:突触间隙极窄,约2-4nm 左右; 突触前、后膜的构造完全相等,无增厚,紧相贴附,突触前膜无突触囊泡。电信号的传递是通过连接子通道进行的。

传递:

化学突触传递的基本过程:当突触前神经元产生的动作电位传导到神经末梢的突触前膜,动作电位的到来引起突触前膜去极化,激活突触前膜的电压门控Ca2+通道,细胞外Ca2+进入轴突末梢,导致突触前膜内Ca2+浓度升高。钙离子进入突触前膜可促使突触囊泡与突触前膜融合,通过出胞作用将囊泡内的神经递质释放到突触间隙,神经递质通过扩散作用到达突触后膜,与突触后膜上的特异性受体或通道结合,导致突触后膜的离子通透性发生改变,出现离子跨膜移动,即可改变突触后膜的膜电位,产生去极化或者超极化的突触后电位。

2、细胞信号转导第二信使,再经过后面的各级信号传递途径进行级联传递,最终引起相应的生理反应或基因表达的整个过程。

3、神经元信号转导:神经递质、神经调质、激素、神经营养因子等细胞间信号转化为细胞内生物化学信号并产生后续神经细胞功能改变的过程。

细胞信号转导通路的特征:(1)级联放大作用 (2)是复杂的网络系统,某种信号分子往往可以同时激活几种不同的下游通路中的信号分子。 4、神经系统信号传导

神经信号是一种电信号,其传导速度是极快,信号在神经上传递时表现为电位变化,但在胞体间传递时却有不同的介质。产生不同的介质是因为,电冲动打开了电压门通道,使得末端中的一些化学物质释放,被相邻神经元的受体结合,打开这个神经元的配体门控通道,有转变为电冲动

5、神经递质和神经调质(熟悉)

神经化学传递是神经系统最重要最基本的功能。

神经递质是指由突触前神经末梢释放,作用于突触后膜的受体,具有在神经元之间或神经元与效应细胞之间传递信息的的特殊化学物质。

神经调质:指神经元产生的另一类化学物质,它本身并不能直接跨突触进行信息传递,只能间接调节递质在突触前末梢的释放及其基础活动水平,增强或减弱递质的效应,进而对递质的活动进行调节。

作用:它能调节信息传递的效率,增强或削弱递质的效应。 递质肯定是调质,但调质不一定是递质。

递质共存:在中枢和外周神经系统内,有两种或两种以上的递质同时存在于一个神经元内。 递质不仅共存,还能同时释放。

生理学意义:

(1)共存在递质释放后,起协同传递信息的作用;

(2)可通过突触前调节的方式,改变相互的释放量,加强或减弱突触传递活动;

(3)可直接作用于突触后受体,以相互拮抗或协同的方式来调节器官的活动,使机体的功能调节更加完善、更加协调。

6、突触整合

• CNS 内的突触传递的复杂性:

中枢神经元的各个部位每时每刻都接受着不同性质、不同强度突触传入活动的影响,在神经元上产生幅度大小不一、持续时间不一的EPSP 和IPSP 。

• 突触整合:

神经元将各种传入冲动引起的突触后反应进行时间和空间的总和,最终决定是否输出动作电位的过程称为突触整合。

• 突触整合的本质就是突触处被激活的电导和离子流的对抗;脑的最基本的功能活动

的本质就是进行突触整合。

• 突触整合的简单形式就是总和,包括时间总和和空间总和。前者指某一突触连续活

动时,相继产生的多个突触后电位进行的叠加过程;后者指几个相邻突触同时活动时产生的多个突触后电位的叠加过程。

• 突触整合的关键部位在轴突起始段,此处是动作电位的触发区,其细胞膜具有高密

度的电压门控钠通道,阈电位较其它部位低。

• 突触后膜上电位改变的总趋势取决于同时产生的EPSP 和IPSP 的代数和。当总趋势

为超极化时,突触后神经元表现为抑制;当突触后膜去极化时, 则神经元的兴奋性升高,如去极化达阈电位,即可爆发动作电位。

7、受体

1 受体的基本概念和特性

• 受体指能与配体结合并能传递信息、引起效应的细胞成分。由两部分组成:接受部分(特异性结合)和效应成分(换能)

• 功能:识别和结合;信号转导;产生生物学效应

• 配体(ligand )是指能与受体呈特异性结合的生物活性分子。

• 受体的基本特性

• (1)饱和性

• (2)专一性(最重要)

• (3)可逆性

2 受体分类

(1)配体门控性离子通道受体。(快速非酶受体)

如:ACh 受体

(2)G 蛋白偶联型受体

如:肾上腺能受体、胆碱能M 型受体、阿片受体等

(3)催化型受体(酶活性受体)

如:心钠肽、脑钠肽 、胰岛素受体等

(4)核内受体(甾体激素受体和神经甾体受体)

如:肾上腺皮质激素受体、性激素受体、甲状腺激素受体等。

四:神经解剖学基础

神经核:在中枢部皮质以外,形态和功能相似的神经元胞体聚集成团或柱,称为神经核 神经节:在周围部,神经元胞体聚集处称神经节

纤维束:在中枢部,凡起止、行程和功能基本相同的神经纤维集合成束,称为纤维束 神经:在周围部,神经纤维集合成束,称为神经

灰质:在中枢部,神经元胞体及其树突的集聚部位称灰质

白质:在中枢由神经纤维聚集的部位称白质

皮质:灰质在大、小脑表面成层配布称皮质

髓质:位于大脑和小脑的白质因被皮质包绕而位于深部,称为髓质

网状结构:在中枢布,神经纤维交织成网状,网眼内含有分散的神经元或较小的和团区域称为网状结构

掌握临床常用的脊髓深反射的传入传出神经对应的中枢阶段及反应表现

答:肱二头肌反射,反射中枢在,颈髓5-6节,传入神经为肌皮神经内的感觉纤维,传出神经为肌皮神经的躯体运动纤维,表现是产生屈肘,前臂快速屈曲,正常反应为肱二头肌收缩; 肱三头肌反射,反射中枢在,颈髓7-8节,传入传出均为绕神经,表现为肱三头肌收缩,肘关节伸直;

桡骨骨膜反射,反射中枢在,颈髓5-6节,传入神经为绕神经,传出神经为正中神经,绕神经,肌皮神经,表现屈肘,前臂旋前;

膝腱反射,反射中枢在,腰髓2-4节,传入传出均为股神经,表现为小腿伸直

跟腱反射,反射中枢在,骶髓1-2节段,传入传出均为胫神经,表现向跖面屈曲

五、神经系统发育

了解神经系统的发生和分化;胚胎诱导

神经系统是由神经管和神经嵴演变而来,在胚胎的发育过程中,神经管发育成中枢神经系统,神经嵴发育成外周神经系统的一些结构。

胚胎的第一个区域(或组织)与第二个区域相互作用,影响第二个区域的分化或行为的过程,称为胚胎诱导作用。

六、神经—内分泌—免疫调节(填空)

中枢神经系统与免疫系统之间的联系

主要通过两条途径:

一是下丘脑-自主神经系统-淋巴器官;二是下丘脑-垂体-内分泌腺-淋巴器官

前者主要以神经递质为媒介,后者以内分泌激素(包括神经激素)为媒介。

神经系统和内分泌系统对免疫功能的调节:

从以下几个方面:

1) 调节免疫细胞中间代谢和细胞内信号转导(催乳素与白介素Ⅱ之间的协同作用)

2) 调控与淋巴细胞增殖和分化有关的细胞因子的产生

3) 影响胸腺内淋巴细胞的阳性与阴性选择

免疫细胞产生的细胞因子作用于中枢神经系统(CNS)的途径:

1) 脑内细胞因子的表达:在感染、炎症、出血和其他脑损伤等病理过程中,脑内胶质细胞、

巨噬细胞和神经元等通过级联反应,产生细胞因子,参与对神经内分泌、代谢、神经行为反应等活动的调节。

2) 外周产生的细胞因子免疫信息可以通过以下途径入脑:

A 血液中的细胞因子通过脑室周围缺少血脑屏障的部位(如闹得室周器官、延髓最后区、终板血管器等)进入脑实质

B 在高血压、创伤、饮酒、发热、缺氧、妊娠、饥饿等状态下,BBB (血脑屏障)通透性增加,在免疫应急过程中,细胞因子有入脑的可能

C 少量的细胞因子也可能以主动转运方式入脑

D 细胞因子和脑血管内皮细胞及小胶质细胞上的受体结合,可以产生很多介质,例如前列腺素(PGs )、NO 等,可作为第二信使传递信息,间接影响脑功能。

3)免疫信息通过神经途径影响脑功能:细胞因子的信息也可以通过迷走神经向脑内传递,外周组织和淋巴器官的穿入神经纤维具有免疫分子受体,与受体结合后,可把信息传递至脑。

总之,免疫信息传达到脑有两种方式:一是神经机制,如上述迷走神经;二是被称为体液性“流动脑”途径,包括可饱和运输机制,以及通过闹事周围器和通过介质如前列腺素

七、神经系统的高级功能

一般:联络调节系统和器官活动

高级:学习,记忆,语言,思维,觉醒,睡眠及情绪

A :

八、常见神经系统疾病相关功能障碍

伤害性感受:是指中枢神经对各种伤害性传入信息的加工和反应,可以发生在中枢的各个水平

痛觉:对身体某一部分不愉快的主观体验,尽管其信息的传递和调制同样历经外周和中枢各个水平,但其感知主要脑的高级部位尤其是在大脑皮层,并且是为人类所特有。

九、周围神经损伤与再生

熟悉跨神经元变性的概念

十、中枢神经系统损伤与修复

十一、认知神经科学概论

是研究智能,实体与其环境相互作用原理的科学。主要包括:心理语言学,心理学,人工智能学,人工神经网络理论,计算认知科学与哲学认识论。

十二、神精疾病的脑科学基础

浅反射包括角膜反射、咽反射、腹壁反射、提睾反射、跖反射、肛门反射等。 

腹壁反射异常:传入神经为第7~12肋间神经,通过中枢胸髓第7~12节段后角细胞柱及同节段前角细胞,同时后角细胞的纤维上行到达大脑顶叶皮质,通过大脑连合系到大脑运动区,发出纤维伴锥体束下行,止于第7~12胸髓前角。传出神经为第7~12肋间神经。

临床上腹壁反射消失最有意义,生理性腹壁反射消失多见于老年人、经产妇、腹部脂肪过多、腹壁松弛或腹腔疾病(腹膜炎、腹水)。多发性硬化早期锥体束损害征尚未出现时腹壁反射常已消失。腹壁反射亢进多见于精神紧张、兴奋或神经质者,并无定位意义。帕金森氏病、舞蹈病、锥体外系疾病肤壁反射增强。偏侧型舞蹈病时,病灶对侧腹壁反射亢进。

正常人也有反射极弱或完全不能引出者,最好在吸气之末进行检查。在腹肌稍紧张时(此时头稍抬起)容易引出,称之加强法。

深反射是肌肉受突然牵引后引起的急速收缩反应,反射仅由感觉神经元和运动神经元直接联系而成。一般用叩击肌腱亦可引起深反射,肌肉收缩反应在被牵引的肌肉最明显,但不限于肌肉。

  深反射的增强是因皮质运动区或锥体束受损所引起,为上运动神经元损害的重要体征。

  肱二头肌腱反射

  传入神经为肌皮神经,中枢在颈髓567,传出神经为肌皮神经,肱二头肌反射属于生理反射。脊髓的损害、肌肉疾病、周围性神经病可引起增强或减弱。

  被检查者前臂屈曲90度,检查者用左拇指置于被检查者肘部肱二头肌腱上,然后右手持叩诊锤扣左拇指甲,可使肱二头肌肌收缩,引出屈肘动作。如反射亢进、减低或消失均为病理性改变。

膝反射异常

  传入神经为股神经,中枢在腰髓2~4,传出神经为股神经。膝反射减弱或消失最常见于脊髓或周围神经性病变,是下运动神经元瘫的体征之一,多见于肌病,小脑及锥体外系疾病。反射亢进为上运动神经元瘫痪的体征,见于甲亢、破伤风、低钙抽搐,精神过度紧张亦可出现。

患者仰卧位或坐位,被检查者小腿完全松驰,(仰卧位检查时,被检查者以左手托起其膝关节使之屈曲约120度),右手持叩诊锤扣膝髌骨下方股四头肌腱,可引起小腿伸展。膝反射增强多见于锥体束损害,膝反射高度亢进常可伴有髌阵挛。

  踝反射异常

传入神经为胫神经,中枢在骶1~2,传出神经为胫神经。此反射属生理反射。

当极度亢进时常伴有踝阵挛,提示有锥体束病变。当坐骨神经受损、腰间盘脱出、坐骨神经炎、胫神经麻痹时踝反射减弱或消失。

(1) 1   1→2→3→4→5  (2)肱二头肌 肱三头肌   (3) 细胞体 传导  (4) 吃梅止渴 谈梅止渴

试题分析:(1)反射弧是由参与反射的神经结构组成,即1感受器、2传入神经、3神经中枢、4传出神经、5效应器五部分构成。其中1感受器能够接受刺激并产生神经冲动,2传入神经能将感受器产生的神经冲动传到4神经中枢,神经中枢能接受神经冲动,并产生新的冲动传给5传出神经,传出神经能将来自神经中枢的神经冲动传给6效应器,效应器能接受神经冲动并做出反应。所以神经冲动的传导途径是:感受器→传入神经→神经中枢→传出神经→效应器。

(2)缩手反射中的缩手动作,主要是完成了一个屈肘运动。肘部的运动主要由肱二头肌和肱三头肌的牵拉完成。屈肘时,肱二头肌收缩,肱三头肌舒张。

(3)图中A结构是脊髓的灰质,主要由神经元的细胞体汇集在一起而形成。B结构是脊髓的白质,主要由神经纤维汇集而成,而神经纤维的主要功能是传导神经冲动。

(4)简单反射与复杂反射的本质区别是否有大脑皮层的参与。没有大脑皮层参与的,神经中枢在大脑皮层以下的反射是简单反射。“缩手反射”与“吃梅止渴”都是人生来就有的,由大脑皮层以下的神经中枢参与即可完成的一种简单反射。神经中枢在大脑皮层上的反射是复杂反射。“望梅止渴”有视觉中枢的参与,“谈梅止渴”有语言中枢的参与,因此都属于复杂反射,其中语言中枢是人类所特有的,因“谈梅止渴” 是人类特有的反射活动。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/11009463.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-20
下一篇2023-11-20

发表评论

登录后才能评论

评论列表(0条)

    保存