人类的情感由什么激素控制?

人类的情感由什么激素控制?,第1张

人类的情感不受激素控制的,而是由主观判断能力所决定的,当人产生抑郁时便会分泌抑制大脑中枢的激素,以此来隔断与外界的联系,通常称之为自闭症,情感不受激素控制,相反的是激素被情感所驾驭。

人脑的下丘脑区域属于人类的情绪中枢。下丘脑一般被认为是情绪表达的重要结构。机械或电刺激病人下丘脑会产生强烈的攻击性或欣快的爆发。去除大脑皮层后动物可自发地发生或轻微刺激即可引起“假怒”的情绪反应,如甩尾巴、竖毛、张牙舞爪、扩瞳、出汗、呼吸加快、血压升高等。

破坏下丘脑后部的动物只能表现一些片断的怒反应,而不能表现协调的怒模式。刺激动物下丘脑的外侧区可引起斗争或像发怒的表现,刺激内侧区可引起逃避或像恐惧的表现。

扩展资料

下丘脑其他的生理功能:

1、体温调节

动物实验中观察到,在下丘脑以下横切脑干后,其体温就不能保持相对稳定;若在间脑以上切除大脑后,体温调节仍能维持相对稳定。现已肯定,体温调节中枢在下丘脑。

2、摄食行为调节

用埋藏电极刺激清醒动物下丘脑外侧区,则引致动物多食,而破坏此区后,则动物拒食;电刺激下丘脑腹 内侧核则动物拒食,破坏此核后,则动物食欲增大而逐渐肥胖。由此认为,下丘脑外侧区存在摄食中枢。

3、水平衡调节

水平衡包括水的摄入与排出两个方面,人体通过渴感引起摄水,而排水则主要取决于肾脏的活动。损坏下丘脑可引致烦渴与多尿,说明下丘脑对水的摄入与排出均有关系。

——情绪的生理机制

中枢的抑制性活动称为中枢抑制。根据抑制机制可分为突触前抑制(去极化抑制)和突触后抑制(超极化抑制)。而突触后抑制根据抑制性中间神经元的功能与****的不同又可分为传人侧支性抑制和回返性抑制。

 

目录 1 拼音 2 突触后抑制 3 突触前抑制 1 拼音

zhōng shū yì zhì

在任何反射活动中,中枢内既有兴奋活动,又有抑制活动。中枢抑制也能总和,也有后作用,因此它和中枢兴奋一样也是神经的活动过程。中枢抑制可分为突触后抑制与突触前抑制两种。

2 突触后抑制

在反射活动中,由于突触后神经元出现抑制性突触后电位而产生的中枢抑制,称为突触后抑制。一个兴奋性神经元兴奋时,只能引起与它联系的其他神经元产生兴奋,而不能直接引起其他神经元产生突触后抑制;只有当兴奋性神经元先引起一个抑制性中间神经元兴奋时,才能转而抑制其他神经元。抑制性中间神经元兴奋时,其末梢释放抑制性递质,使所有与其联系的其他神经元的突触后膜产生抑制性突触后电位,从而使突触后神经元的活动发生抑制。

1抑制性突触后电位当抑制性中间神经元兴奋时,突触前膜释放抑制性递质,递质作用于突触后膜,使后膜发生超极化,膜电位由70mV向80mV靠近。这种超极化电位称为抑制性突触后电位。可以设想,在超极化时就不易发生去极化,即不易发生兴奋,也就表现为抑制。

抑制性突触后电位形成的原理是突触前膜释放的抑制性递质,能使突触后膜对K 和Cl(尤其是Cl,但不包括Na )的通透性升高,Cl的内流和K 的外流导致膜发生超极化,出现抑制性突触后电位。

2突触后抑制的分类根据抑制性神经元的功能和****的不同,突触后抑制可分为交互抑制和回返性抑制。

(1)交互抑制:当一个中枢兴奋时可同时引起另一中枢发生抑制的现象,称为交互抑制。例如屈肌反射进行时,屈肌中枢兴奋,而伸肌中枢则被抑制。交互抑制是由于一个感觉神经元兴奋时,冲动沿传入纤维进入脊髓后,一方面直接兴奋某一中枢的神经元,另一方面经其侧枝兴奋一个抑制性中间神经元,转而引起另一中枢的抑制。这种抑制是经传入神经的侧枝而引起的,所以又称为传入侧枝性抑制。交互抑制可使不同中枢(尤其是功能上拮抗的中枢)之间的活动协调起来;即当一个中枢兴奋时,与之拮抗的中枢即发生抑制,两者互相配合,使反射活动更为协调。

(2)回返性抑制:一个中枢的兴奋活动可通过兴奋一个抑制性中间神经元而返回抑制原先发动兴奋的神经元的活动,称为回返性抑制。回返性抑制是由于在反射的传出途径中,有抑制性神经元与原先发动兴奋的神经元发生环状联系的缘故。这样,某一中枢的神经元兴奋时,一方面经其轴突外传,另一方面经轴突侧枝去兴奋一个抑制性中间神经元,由它返回抑制原来神经元的活动,使其活动及时中止。脊髓前角运动神经元与闰绍细胞之间的功能联系就是回返性抑制的典型。士的宁和破伤风毒素可破坏闰绍细胞的功能,阻断了回返性抑制,导致骨骼肌发生痉挛。

3 突触前抑制

突触前抑制的发生与轴突轴突型突触的功能有关。如图119所示,神经元1的轴突与神经元2的轴突形成轴突轴突型突触联系,神经元2的轴突又与神经元3的胞体形成轴突胞体型突触,而神经元1与神经元3无直接接触。当神经元1单独兴奋时,可引起神经元2的轴突末梢产生去极化,但对神经元3无直接影响;而神经元2兴奋时,可引起神经元3的突触后膜发生一个10 mV左右的兴奋性突触后电位。如果在活动过程中神经元1先兴奋,引起神经元2的轴突末梢去极化,在此基础上神经元2发生兴奋,这样当冲动传到末梢时,由于末梢去极化而膜电位变小,末梢的动作电位幅度也变小。目前知道,末梢的动作电位是触发递质释放的因素,动作电位幅度大则递质释放量多,动作电位幅度变小则递质释放量减少。上述神经元2的末梢由于先发生去极化而使动作电位幅度变小,从而使递质释放量减少,导致神经元3的兴奋性突触后电位明显变小(仅为5mV左右),导致神经元3不易甚至不能发生兴奋,呈现了抑制效应。突触前抑制不同于突触后抑制,它并不引起抑制性突触后电位,而是由于突触前膜去极化而造成的抑制,所以称为突触前抑制。

突触前抑制广泛存在于中枢神经系统内,尤其多见于感觉传入途径中,对调节感觉传入活动有重要作用。当一个感觉传入纤维兴奋时,冲动传入脊髓后,沿特定的途径传向高位中枢,同时由侧枝通过多个神经元的接替,转而对其近旁的感觉传入纤维的活动发生突触前抑制,限制其他感觉的传入。

目前普遍认为脑内情绪与行为异常关系最密切的结构是边缘系统以及与其存在广泛联系的周围结构,边缘系统虽是激发和调节情绪和行为的重要结构,但它不是一个独立的解剖学和功能性褓一,其功能与作用有赖于额叶、颞叶皮质及皮质下结构的联系及其对边缘系统的调控。

但是人类的精神活动非常复杂,现在当许多精神疾病病因未明的情况下通过精神外科的手术来减轻和消除疾病的症状也不失为一种可取的方法。与各种精神疾病有关的特异性解剖学定位虽未完全发现,但下属各解剖部位与精神活动的异常密切相关。

1、边缘系统

1878年法国神经病学家Pierre Pacel Broca注意到扣带回至海马的一圈环节脑结构,组成每侧大脑半球的内侧壁,称之为大边缘叶。1901年Cajal发现扣带回一海马一穹窿为嗅觉的传导通路。Herrick(1933年)认为这一行为、学习和记忆有关。动物实验证明,破坏这些结构可以使动物的行为与情绪发生变化。1937年Papez综合以前的研究资料,提出情感环路理论,即由隔区开始经扣带回至海马,又经穹窿至乳头体,再由乳头体丘脑通路至丘脑前核,最后由前丘脑通路回到扣带回,形成边缘系统的内侧环路,认为此系统可能是情感、感觉和行为中枢,具有协调中枢情感活动的功能

1948年Yakovlev补充了一条由额叶眶回、脑岛颞叶前区、杏仁核投射到丘脑背内侧核,又投射到额叶眶回的纤维环路,变参与情绪与行为活动的调节,称为基底外侧边缘环路。内侧环路与外侧环路共有的区域是隔区、丘脑下部和“边缘中脑区”。其中心区主管内脏活动,中间区主管情绪活动,外层区与周围环境改变活动相联系。边缘内侧环路与中脑网状结构有较多联系,这一环路被破坏将引起行为与精神活动减低,刺激将引起动作及精神活动过多综合征。因此手术破坏内侧环路可治疗运动过多综合征。因此手术破坏内侧环路可治疗运动过多综合征,而破坏外侧环路则可改善情绪异常和行为障碍。

1972年Kelly又补充了第三条边缘环路,称为“防御反应环路”。此环路由下丘脑经终、纹隔区至杏仁核,又由杏仁核返回下丘脑。刺激此环路,动物出现憨态;加大刺激后表现为躁动、呼吸和脉搏加快、肌肉血流加快。推测此环路是产生情感反应和相应内脏反应的区域。

2、伏隔核

伏隔核(nucleus accumbens,NAc)位于尾状核于××之间,他分为壳部和××,他参加中脑边缘多巴胺(DA)奖赏回路,它接受来自中脑腹测被盖区(ventral tegmental area,VTA)的多巴胺纤维神经语言的抑制性投射,并且汇集了前额叶皮层、海马、杏仁核等部位由兴奋性氨基酸介导的传入神经末梢,DA和GABA等多种神经递质共同调制NAc突触后神经元,使有关学习记忆和情绪活动的输入信息经过NAc的“过滤”和“把关”输入到腹侧苍白球和黑质致密区,通过基底核回路的反馈调节转化为需要完成的行为反应。近期研究证明,NAc内DA神经元直接参与阿片的急性奖赏作用及负性强化反应。Schoffelmeer等人认为吗啡不仅引起NAc内DA、GABA等神经递质胞裂式释放,而且可引起无囊泡GABA的持续释放,从而导致行为敏感化等适应性变化。在NAc内微量注射c-fos反义链同样证实NAc在阿片类药物耐受、依赖形成过程中,尤其是获得性记忆方面起决定性作用,若在吗啡引起的行为效应,但当行为效应形成后注射c-fos反义链,则不能减弱或反转该效应。伏隔核从解剖和功能定位看,NAc不仅仅是中脑DA神经元投射的重要核团,而且它汇集多脑区(mPFC、海马、杏仁核)由Glu介导的传入神经末梢,使有关学习记忆、情感等输入信息在此过滤(filtering)和把关(gataing),并与基底神经节构成反馈环路,参与精神运动反应的调节。因此,Nac很可能是阿片和精神兴奋剂强化作用最后的共同神经结构。人们很早就注意到,将苯丙胺和DA直接注入到Nac内,大鼠IVSA的奖赏行为明显增强,而6-OHDA损毁VTA-Nac的DA神经投射,则明显地削弱可卡因对IVSA的强化作用。研究证明,可卡因、苯丙胺等精神兴奋剂的强化效应与Nac内DA和DA受体作用机制有密切的关系。同样地,阿片类药物直接注入Nac区也能诱发IVSA行为,若局间给予阿片拮抗剂或海人藻酸损毁Nac神经元均能减弱阿片类药物的强化效应。此外,阿片明显增加Nac区DA的释放,此作用于阿片类药物的精神兴奋性行为和成瘾性相平行。这表明DA是阿片类药物及粗神性药物滥用,产生强化效应的共同神经递质。

Nac是阿片类药物作用的重要靶区。GABA神经元是Nac内主要的靶细胞,并接受DA和Glu神经的投射。长期给予吗啡后,既增加Nac神经元cAMP-PKA系统的活性,并能降低阿片受体信号转导相耦联的Gi/oa亚单位数量;后者进一步增强cAMP-PKA 系统功能。这种适应反映了阿片长时间抑制cAMP-PKA系统活动,诱发细胞内环境出现稳态的补偿性反应;尤以G蛋白-cAMP-蛋白磷酸化活性的上调,是多种药物滥用对VTA-Nac DA系统影响的共同适应性变化,并显示出交互敏感的药理作用特性。

与VTA的作用有所不同,Nac在吗啡或可卡因反复用药,并不出现形态结构的变化,而是表现突触后神经元D1受体的长时程超敏(long-term supersensitivity)。这种超敏的适应性变化可能是VTA机能改变的继发效应,例如VTA神经纤维丝蛋白的减少和TH往Nac转运量的下降,使Nac内神经末梢的DA合成和释放量减少。已证明,当NacDA神经末梢的功能降低和Nac神经元cAMP水平的增高时,能易化D1受体的超敏。D1受体超敏的特征是胞内信号转导水平的上调,而非受体密度的改变。D1受体的长时程适应,可能是戒断后动物对药物产生持续性渴求(craving)行为的重要因素。然而,D2受体与D1有所不同,长期使用可卡因,使NacD2受体密度上调,这种适应可能与Nac Gi/o蛋白减少有关。

3、中脑腹测被盖区

中脑腹测被盖区(TVA)位于中脑被盖区,它是中脑边缘额叶DA系统的胞体所在区,其投射纤维在NAc和前额皮层(prefrontal cortcxPFC)有着密集分布。生理状态下,VTA DA神经元受到GABA神经元的紧张性抑制。研究发现,吗啡等阿片类药物并不直接作用于DA神经元,鸸通过激动GABA中间神经元上的U受体,抑制该神经元活动,从而解除GABA神经元对DA神经元的紧张性抑制,由此激活VTA DA神经元,使期对投射靶区(如NAc)的DA释放量增加。实验证明,VTA内注入吗啡或阿片肽均可降低自身脑刺激(intracraial self-stimulation,ICSS)的奖赏阈,产生条件位置偏爱(conditioned place preference,CPP)和自身静脉给药(intravenous selfadministration,IVSA),表明VTA是阿片成瘾DA依赖机制中的重要结构成分。

4、丘脑

丘脑旧名视丘,是构成第三脑室壁的主要部分,丘脑为一卵圆形灰质团块,是间脑的最大部分。丘脑分为上、下两部分,其间以丘脑下沟为界,上部为前侧丘脑,为丘脑的本体部分,即通常所称的丘脑;下部为腹侧丘脑(又称丘脑底部)和丘脑下部。丘脑前部较狭窄,称为前结节,突向前内,构成室间孔后界;后端膨大成为丘脑枕。丘脑底部实际上是中脑被盖的延续,红核与黑质均进入该部。丘脑底核与运动功能有关,接受大脑、小脑的传入纤维并与苍白球联系。丘脑背侧由丘脑前核、内侧核、外侧核和后核组成。另外,在室旁灰质中还有若干小的核团,组成中线核群。

1、丘脑前核 丘脑前核接受乳头丘脑束和穹窿的纤维,发出的纤维纳囊额部投射到扣带回,此外还发出纤维经髓纹至缰核,并与丘脑内外侧核有联系。因此,丘脑前核是一个把丘脑下部的活动与其他丘脑核群,以及边缘系统联系起来的重要中枢。

2、丘脑内侧核 内侧核群中最大最重要的是背内侧核,分为大细胞部和小细胞部两部分。大细胞部与纹状体、丘脑下部有往返纤维联系,还接受由杏仁复合体、梨状区皮质来的纤维,传出纤维投射到眶额皮质。小细胞部和额叶皮质有广泛的联系,且存在点对点的定位。背内侧核是内脏与躯体冲动进行整合的中枢,并参与情绪和意识活动。

3、丘脑枕 丘脑枕的传入纤维来自内、外侧膝状体,另外还有腹后核、上丘、顶盖前区和枕叶。丘脑枕的各个核投射到皮质的各个不同区域,内侧核主要投射到顶下小叶,外侧核投射到颞叶后部,下核投射到纹状区周围皮质。丘脑枕的联系复杂,可能是躯体感觉、视觉、听觉等各种传入冲动的整合中枢。

4、髓板内核群 其纤维联系广泛,与中线核群、背内侧核和腹前核之间有往返联系。从脑干网状结构效应区发出的长的上升纤维终止于此核群。

5、丘脑下部

丘脑下部的前端以前连合到视交叉前缘的平面为界;后界不明确,通常以通过乳头体后方的平面为界。丘脑下部与丘脑某些核团的联系以及与杏仁核簇和海马的联系,提示它与情绪表态有关。丘脑下部接受大脑皮质、丘脑与杏仁核的纤维,也接受中脑网状结构和室周灰质的纤维,来自苍白球、视网膜以及脊髓与脑干的传入纤维也可到达丘脑下部。穹窿是到丘脑下部最大的传入纤维束,它含有许多从隔区到海马的纤维。丘脑下部的生理功能十分复杂,参与发动和整合伴随情感而出现的外周自主性和躯体性活动,电刺激穹窿周围或丘脑下部的腹内侧核及其邻近区,可引起愤怒反应和攻击行为。丘脑下部的炎症、肿瘤和血管病变,可出现人格、情绪和情感反应的改变,这可能与丘脑下部失去了对情感反应的整合作用有关,但是丘脑下部并非情感和性格改变的中枢。新皮质、嗅脑区、扣带回、眶回和颞极等神经结构可通过丘脑下部进行活动或受丘脑下部制约。

6、杏仁核

杏仁核是位于颞叶前部、侧脑室下角尖端上方的灰质核团,又称杏仁核复合体,一般分为两大核群,即皮质内侧核和基底外侧核及前可仁区和皮质杏仁区。人类脑杏仁核的纤维联系至今尚未十分清楚。杏仁核的传入纤维来自嗅球及前嗅核,经外侧嗅纹终止于皮质内侧核;来自梨状区及间脑的纤维终止于基底外侧核。杏仁核参与了中脑边缘DA奖赏回路并接受下丘脑、丘脑、脑干网状结构和新皮质的纤维。杏仁核的传出纤维通过终纹隔区、内侧视前核、丘脑下部前区和视前区,越过前连合后,部分纤维经髓纹终止于缰核,而另一部分不进入髓纹而直接终止于丘脑下部、丘脑背内侧核、梨状区和中脑被盖网状结构。另外,杏仁核与前额区皮质、扣带回、颞叶前部、岛叶腹侧之间有往返纤维联系。杏仁核的功能仍不十分清楚,大量动物试验和临床实践证明,杏仁核与情感、行为、内脏活动及自主神经功能等有关。电刺激杏仁核,病人可表现恐惧、记忆障碍等精神异常,呼吸节律、频率和幅度改变,以及血压、脉搏、瞳孔和唾液分泌变化。

7、前额区

前额区又称前额叶,是指运动区以前的额叶和扣带回膝部,与精神活动联系最重要的部分为眶回皮质,也包括直回。自前额区发出的纤维到丘脑的各核团、丘脑下部、纹状体、脑干、尾状核、苍白球等结构。传入纤维大多来自丘脑的一些核团,如丘脑背内侧核通过内囊前肢投射到前额区皮质。前额区的生理功能与精神活动有密切关系,早期精神外科所施行的前额叶脑白质切断术就是以此为理论依据的。

8、扣带回和扣带束

扣带回绕胼胝体的轮廓走行,从胼胝体下区到压部,构成了扣带回的大部分。经过压部后,在海马回内继续前行,几乎到达颞极。扣带束位于扣带回内,是皮质之间的联系纤维。其丰富报仇雪恨离纤维向背、腹、内侧辐射至颞、顶、枕叶,分别使扣带回与纹状体、胼胝体、壳核、海马、杏仁核、额叶、颞极、眶区等发生联系。由于扣带回的纤维联系广泛,成为边缘系统的重要环节。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/7881203.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存