有理数和无理数的概念

有理数和无理数的概念,第1张

有理数整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

有理数的概念

有理数是指两个整数的比。有理数是整数和分数的集合。整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

有理数和无理数的区别

1性质区别:

有理数是两个整数的比,总能写成整数、有限小数或无限循环小数

无理数不能写成两个整数之比,是无限不循环小数。

2结构区别:

有理数是整数和分数的统称。

无理数是所有不是有理数的实数,

3范围区别:

有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行。

无理数是指实数范围内不能表示成两个整数之比的数。

无理数的概念

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。

有理数包括:正整数、0、负整数、正分数、负分数。我已经为大家整理好了相关内容,快来学习一下吧。

有理数包含什么

整数:正整数、零、负整数

分数:正分数、负分数

什么是有理数

有理数,是数学这一科学当中对数字的一种概念定义,有理数是整数与分数这两类数字所构成的集合的一种统称,实际上我们也可以将该集合当中的整数看做是分母数字等于1的分数,与有理数相对的概念就是无理数。

有理数运算定律

加法运算律:

(1)加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a。

(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即a+b+c=a+(b+c)。

减法运算律:

(1)减法运算律:减去一个数,等于加上这个数的相反数。即:a-b=a+(-b)。

(2)减法结合律:三个数连减,可以先将两个减的数相加,然后再减,差不变,即:a-b-c=a-(b+c)。

(3)减法交换律:三个数连减,可以调换两个减数的位置,差不变,即:a-b-c

=a-c-b

乘法运算律:

(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即ab=ba。

(2)乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即abc=a(bc)。

(3)乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即a(b+c)=ab+ac。

以上内容就是我为大家找来的有理数相关内容,希望可以帮助到大家。

由来:

是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。

扩展资料

有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

参考资料有理数_

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/lianai/8284555.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-15
下一篇2023-09-15

发表评论

登录后才能评论

评论列表(0条)

    保存