整理了一些重要的数学符号。
有理数集Q
Q表示的意义是:有理数集。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
整数集合Z
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数,分数。
实数集R
实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。
18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
内容如下:
1、几何学符号:⊥∥∠⌒⊙≡(恒等于或同余)≌△(三角形)∽(相似)。
2、代数符号:∝∧∨~∫∮≠≤(小于等于)≥(大于等于)≈∞(无穷大)。
3、集合符号:∪(集合并)∩(集合交)∈。
4、特殊符号:∑π(圆周率)。
5、推理符号:↑→←↓↖↗↘↙。
符号的作用
一个符号不仅是普遍的,而且是极其多变。可以用不同的语言表达同样的意思,也可以在同一种语言内,用不同的词表达某种思想和观念。“真正的人类符号并不体现在它的一律性上,而是体现在它的多面性上,而是灵活多变的”。卡西尔认为,正是符号的这三大特性使符号超越于信号。
人的“符号”不是“事实性的”而是“理想性的”,人类意义世界的一部分。信号是“操作者”,而符号是“指称者”,信号有着某种物理或实体性的存在,而符号是观念性的,意义性的存在,具有功能性的价值。
1、语气上不同
句号:句号结尾的谢谢语气比较平淡。
感叹号:表示赞颂,主要用在感叹句的句末。
2、情感上不同
句号:句号结尾的感谢情感比较平淡,有出于客套的感谢之意,感情平淡,语气平缓。表示已表达的意思结束。
感叹号:表示强烈的感情,以抒发感情,它所表示的感情有赞颂、喜悦。谢谢的情感更加浓烈,发自内心的赞颂感谢。
扩展资料:
感叹号的其它用法:
1、表示强烈的感情,例如:我真的很高兴! 无论是喜、怒、哀或乐,只要带有强烈感情,均会在句尾用叹号。
2、表示命令、祈求,例如 :求求你!不要离开这个家!
3、叹词,例如: 唉! 啊! 呀!
4、敬语,例如:恭喜!恭喜! “恭喜”是单独成句的敬语,故在后面用叹号。
5、呼语句,例如:孩子们!要乖乖听父母的话。“孩子们”是呼语,加上叹号可强调说话对象。
6、数学符号,表示阶乘。如:5!=5x4x3x2x1=120
-句号
-感叹号
运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号||,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
关系符号:如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号。
“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于)。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号。
“⊇”是包含符号,“|”表示“能整除”(例如a|b表示“a能整除b”,而||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。
结合符号:如小括号“()”,中括号“[]”,大括号“{}”,横线“—”,比如。
性质符号:如正号“+”,负号“-”,正负号“”(以及与之对应使用的负正号“”)。
省略符号:如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数),双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠),∵因为∴所以。
总和,连加:∑,求积,连乘:∏,从n个元素中取出r个元素所有不同的组合数(n元素的总个数;r参与选择的元素个数),幂等。
排列组合符号:C组合数、A(或P)排列数、n元素的总个数、r参与选择的元素个数、!阶乘,如5!=5×4×3×2×1=120,规定0!=1、!!半阶乘(又称双阶乘)。
例如:7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840。
离散数学符号:∀全称量、∃存在量词、├断定符(公式在L中可证)、╞满足符(公式在E上有效,公式在E上可满足)、﹁命题的“非”运算。
如命题的否定为﹁p、∧命题的“合取”(“与”)运算、∨命题的“析取”(“或”,“可兼或”)运算、→命题的“条件”运算。
↔命题的“双条件”运算的、p<=>q命题p与q的等价关系、p=>q命题p与q的蕴涵关系(p是q的充分条件,q是p的必要条件)、A公式A的对偶公式,或表示A的数论倒数(此时亦可写为)。
wff合式公式:iff当且仅当、↑命题的“与非”运算(“与非门”)、↓命题的“或非”运算(“或非门”)、□模态词“必然”、◇模态词“可能”、∅空集、∈属于(如"A∈B",即“A属于B”)、∉不属于、P(A)集合A的幂集。
|A|集合A的点数、R²=R○R[R、=R、○R]关系R的“复合”、ℵAleph,阿列夫、⊆包含、⊂(或⫋)真包含、另外,还有相应的⊄,⊈,⊉等。
∪集合的并运算:U(P)表示P的领域、∩集合的交运算、-或\集合的差运算、⊕集合的对称差运算、〡限制、集合关于关系R的等价类。
A/R集合A上关于R的商集、[a]元素a产生的循环群、I环,理想、Z/(n)模n的同余类集合、r(R)关系R的自反闭包。
s(R)关系R的对称闭包、CP命题演绎的定理(CP规则)、EG存在推广规则(存在量词引入规则)、ES存在量词特指规则(存在量词消去规则)、UG全称推广规则(全称量词引入规则)、US全称特指规则(全称量词消去规则)。
扩展资料:
更多数学表达符号:
∞ 无穷大、π 圆周率、|x| 绝对值、∪ 并集、∩ 交集、≥ 大于等于、≤ 小于等于、≡ 恒等于或同余、ln(x)以e为底的对数、lg(x)以10为底的对数、floor(x)上取整函数、ceil(x)下取整函数。
xmody求余数、x-floor(x)小数部分、∫f(x)dx不定积分、∫[a:b]f(x)dxa到b的定积分、f(x)函数f在自变量x处的值、sin(x)在自变量x处的正弦函数值、exp(x)在自变量x处的指数函数值,常被写作ex、logba以b为底a的对数。
cosx在自变量x处余弦函数的值、tanx其值等于sinx/cosx、cotx余切函数的值或cosx/sinx、secx正割含数的值,其值等于1/cosx、cscx余割函数的值,其值等于1/sinx、asinxy正弦函数反函数在x处的值,即x=siny。
acosxy余弦函数反函数在x处的值,即x=cosy、atanxy正切函数反函数在x处的值,即x=tany、acotxy余切函数反函数在x处的值,即x=coty、asecxy正割函数反函数在x处的值,即x=secy、acscxy余割函数反函数在x处的值,即x=cscy。
添加感叹号“!”,即:我去叫张老师吧!
1、句子中含有明显的感叹词语“吧”。
2、当出现感叹词语时,应当使用感叹号,来表达强烈的感情色彩,这里使用感叹号表达的感情色彩是强烈的意愿。
标点符号种类:
标点符号分为点号、标号两大类。点号表示口语中不同长短的停顿,标号表示书面语言里词语的性质或作用。(注:数学符号、货币符号、校勘符号、辞书符号、注音符号等特殊领域的专门符号不属于标点符号。)
点号:句号( 。)、问号( ?)、叹号( !)、逗号( ,)顿号(、)、分号(;)和冒号(:)。
标号:引号(“ ” ‘ ’)、括号〔( ) [ ] { } 〕、破折号( —— )、省略号(······)、着重号( .)、书名号(《 》〈 〉)、间隔号(·)、连接号( — )和专名号( ____ )、分隔号(/)。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)