肌张力是什么

肌张力是什么,第1张

肌张力简单的说就是肌肉互相牵引产生的力量,肌肉静止松弛状态下的紧张度,称为肌张力。

肌张力是维持身体各种姿势,以及正常运动的基础,并表现为多种形式

例如人在静卧休息时,身体各部介入所具有的张力称为静止性肌张力。

躯体站立时,虽不见肌肉明显收缩,但躯体前后肌肉保持一定张力,以维持站立姿势和身体稳定,成为姿势型肌张力。

在运动过程中的张力,成为运动性肌张力。

临床中用主要用肌张力分级来表现肌张力的病理状态,主要用被动活动肌张力分级标准和改良的ashworth分级标准这两种方式来评估。

 肌张力是肌细胞相互牵引产生的力量。那么你对肌张力了解多少呢以下是由我整理关于什么是肌张力的内容,希望大家喜欢!

肌张力的简介

 肌张力的产生与维持是一种复杂的反射活动,其反射弧叫做“r-袢“,包括r-袢的传入部分(肌张力反射的感受器是神经肌梭和神经腱梭)和r-袢的传出部分(脊髓前角细胞及脑干运动性神经核内的a运动神经元,支配梭外肌、r运动神经元发出Ar纤维到达并支配梭内肌)。其反射弧任何部位的病变均可引起肌张力改变。

肌张力减低的介绍

 (一)肌原性疾病

 ⒈进行性肌营养不良症(progressive muscular dystrophy):是一组由遗传因素所致的肌肉急性疾病,表现为不同程度和分布的骨骼肌进行性加重的无力和萎缩。其肌张力减低与肌萎缩平行,往往在肌萎缩部位伴有肌张力减低。由于肌肉萎缩、力弱及肌张力减低,临床表现站立和步行时特殊姿态,站立时腹部前凸与腰椎前弯,行走时呈“鸭步”,这是由于脊柱旁肌肉张力减低与萎缩,臀肌受损骨盆固定不良引起。前锯的萎缩、力弱与张力减低,站立与坐位时肩胛骨向上外方移位,同时胸廓和脊柱分离,呈翼状肩,检查者能将手指深入至肩胛骨与胸骨之间,系斜方肌、菱形肌肌张力减低所致。

 ⒉肌病同样于肌萎缩部伴有肌张力减低,与肌萎缩呈平关系,实验室检查有助于诊断,如多发性肌炎在急性期可见血清中CPK和免疫球蛋白增高,尿中肌蛋白出现,肌酸增加,肌电图可出现纤颤和插入活动增加。

 (二)神经原性疾病

 ⒈周围神经病变:多发性神经炎的肌萎缩主要分布于肢体的远端,与肌张力减低有平等关系。由于肌张力减低腕关节、指与踝关节动幅增大,呈过伸过屈的异常姿势。根据多发性神经炎的病因,受损肌亦有选择,如酒精中毒性多发性神经炎,胫骨前肌麻痹最明显,肌张力减低也最突出,故往往表现为足下垂。

 单神经病(mononeruopathy)主要由外伤、缺血、浸润、物理性损伤等引起,如上肢尺神经、正中神经损害明显时,上肢的屈肌群张力减低明显,上肢伸肌群(拮抗肌)张力占优势,因而掌握背屈。挠神经高位损伤时,因肱三头肌瘫痪和张力减低而出现肘关节不能伸直及垂腕征,并因肱挠肌力弱和张力减低而使前臂在半旋前位不能屈曲肘关节。

 ⒉后根后索病变:脊髓后根、后索病变时肌张力减低是突出症状之一,以脊髓旁(tabes dorsalis)为代表有静止性肌张力减低,同时也伴有姿势性与运动性肌张力异常。患者仰卧位时胫骨甚至可贴床面,站立时膝关节部张力低,不能保持膝关节固定而出现“反张膝”,下肢肌张力低下较上肢明显。

 ⒊脊髓疾患 ①肌萎缩性侧索硬化(amgotrophic lateral sclerosis)多见于40岁以后,脊髓前角细胞(和脑干运动神经核)及锥体束均受累,因此有上、下运动神经元损害并存的特征。上肢有肌萎缩、无力、肌束颤动和腱反射亢进。颈膨大的前角细胞严重损害时,锥体束症状被掩盖,此时上肢出现肌萎缩,肌张力减退,腱反射减低或消失,被动运动肢体时动幅增大。②Charcot-Marie-Tooth氏病:早期在大腿下1/3以下出现肌萎缩,晚期肌萎缩可扩展到上肢的前臂下1/3以下,两侧对称。在肌萎缩部伴有肌张力减低。③急性脊髓前角炎:于肌萎缩部位肌张力减低,由于急性脊髓前角灰质炎瘫痪与肌萎缩的范围较小,故萎缩的拮抗肌保存,而且它的肌张力占优势,因而经常伴有异常体位,如马蹄内翻足、足下垂等。受累肢体被动运动幅度增大,呈过度屈伸姿势。

 ⒋小脑性疾患:肌张力减低是小脑病变的常见症状,由于肌张力减低,使肢体产生姿势异常,如处于过伸过屈位,除了静止时肌张力表现低下之外,被动运动时也可见到明显的肌张减低,主运动开始与终止时缓慢,自觉无力,容易疲劳,由于肌张减低,腱反射也减低或消失,可见到钟摆动样腱反射。亦因肌张力减低和拮抗肌作用不足而出现“反击征”。

 ⒌锥体疾患:锥体束损害的急性期由于产生锥体束体克,在锥体束休克期内肌张减低,瘫痪的肌肉松弛,被动运动时无阻抗感。

前负荷(牵拉肌肉的力量)越大,肌肉被拉得越长,因而,前负荷决定肌肉收缩前的初长度,此时,肌肉受到牵拉而弹性回位的张力,属于被动张力。不同初长度下,肌肉主动收缩产生的张力为主动张力(在一定范围内,主动张力随初长度的增大而增大,但过度,增加初长度,收缩力下降)。总张力,就是二者之和。另注意,被动张力,随初长度增大而增大

人体各种形式的运动,主要是靠一些肌细胞的收缩活动来完成的。例如,躯体的各种运动和呼吸动作由骨骼肌的收缩来完成;心脏的射血活动由心肌的收缩来完成;一些中空器官如胃肠、膀胱、子宫、血管等器官的运动,则由平滑肌的收缩来完成。不同肌肉组织在功能和结构上各有特点,但从分子水平来看,各种收缩活动都与细胞内所含的收缩蛋白质,主要与肌凝蛋白和肌纤蛋白的相互作用有关;收缩和舒张过程的控制,也有某些相似之处。本节以研究最充分的骨骼肌为重点,说明肌细胞的收缩机制。

骨骼肌是体内最多的组织,约占体重的40%。在骨和关节的配合下,通过骨骼肌的收缩和舒张,完成人和高等动物的各种躯体运动。骨骼肌由大量成束的肌纤维组成,每条肌纤维就是一个肌细胞。成人肌纤维呈细长圆柱形,直径约60 μm,长可达数毫米乃至数十厘米。在大多数肌肉中,肌束和肌纤维都呈平行排列,它们两端都和由结缔组织构成的腱相融合,后者附着在骨上,通常四肢的骨骼肌在附着点之间至少要跨过一个关节,通过肌肉的收缩和舒张,就可能引起肢体的屈曲和伸直。我们的生产劳动、各种体力活动等,都是许多骨骼肌相互配合的活动的结果。每个骨骼肌纤维都是一个独立的功能和结构单位,它们至少接受一个运动神经末梢的支配,并且在体骨骼肌纤维只有在支配它们的神经纤维有神经冲动传来时,才能进行收缩。因此,人体所有的骨骼肌活动,是在中枢神经系统的控制下完成的。

一、神经-骨骼肌接头处的兴奋传递

运动神经纤维在到达神经末梢处时先失去髓鞘,以裸露的轴突末梢嵌入到肌细胞膜上称作终板的膜凹陷中,但轴突末梢的膜和终板膜并不直接接触,而是被充满了细胞外液的接头间隙隔开,其中尚含有成分不明的基质;有时神经末梢下方的终板膜还有规则地再向细胞内凹入,形成许多皱褶,其意义可能在于增加接头后膜的面积,使它可以容纳较多数目的蛋白质分子,它们最初被称为N-型乙酰胆碱受体,现已证明它们是一些化学门控通道,具有能与ACh特异性结合的亚单位。在轴突末梢的轴浆中,除了有许多线粒体外还含有大量直径约50nm的无特殊构造的囊泡(图2-19)。用组织化学的方法可以证明,囊泡内含有ACh;此ACh首先在轴浆中合成,然后贮存在囊泡内。据测定,每个囊泡中贮存的ACh量通常是相当恒定的,且当它们被释放时,也是通过出胞作用,以囊泡为单位“倾囊”释放,被称为量子式释放。在神经末梢处于安静状态时,一般只有少数囊泡随机地进行释放,不能对肌细胞产生显著影响。但当神经末梢处有神经冲动传来时,在动作电位造成的局部膜去极化的影响下,大量囊泡向轴突膜的内侧面靠近,通过囊泡膜与轴突膜的融合,并在融合处出现裂口,使囊泡中的ACh全部进入接头间隙。据推算,一次动作电位的到达,能使大约200~300个囊泡的内容排放,使近107个ACh分子被释放。轴突末梢处的电位变化引起囊泡排放的过程十分复杂,但首先是轴突末梢膜的去极化,引起了该处特有的电压门控式Ca2+通道开放,引起细胞间隙液中的Ca2+进入轴突末梢,触发了囊泡移动以至排放的过程。Ca2+的进入量似乎决定着囊泡释放的数目;细胞外液中低Ca2+或(和)高Mg2+,都可阻碍ACh的释放而影响神经-肌接头的正常功能。已故冯德培院士在30年代对神经-肌接头的化学性质传递进行过重要的研究。

当ACh分子通过接头间隙到达终板膜表面时,立即同集中存在于该处的特殊通道蛋白质的两个α-亚单位结合,每分子的通道将结合两个分子的ACh,由此引起的蛋白质分子内部构象的变化会导致它的通道结构的开放。这种通道开放时,孔道的横截面比前面提到的Na+通道的面积为大,可允许Na+、K+甚至少量Ca2+同时通过;由于这几种离子正常时在膜内处的分布特点,实际出现的是Na+的内流和K+的外流,其总的结果是使终板膜处原有静息电位减小,向零值靠近,亦即出现膜的去极化;这一电变化,称为终板电位,它的出现约较神经冲动到达接头前膜处晚05~10ms。有人曾在运动神经无冲动到达末梢时,记录到由于个别囊泡的自发释放在终板膜上引起的微小的电变化,称为微终板电位。终板电位与前述的局部兴奋电反应有类似的性质:不表现“全或无”特性,其大小与接头前膜释放的ACh的量成比例;无不应期,可表现总和现象等,如我们一般记录到的终板电位就是多数微终板电位总和的结果。终板电位产生时,它将以电紧张性扩布的形式影响终板膜周围一般肌细胞膜。一般的肌细胞膜与神经轴突的膜性质类似,其中主要含电压门控式Na+通道和K+通道;因而当同终板膜邻接的肌细胞膜的静息电位由于终板电位的影响而去极化到该处膜的阈电位水平时,就会引发一次向整个肌细胞膜作“全或无”式传导的动作电位,后者再通过所谓“兴奋-收缩耦联”,引起肌细胞出现一次机械收缩。

正常情况下,一次神经冲动所释放的ACh以及它所引起的终板电位的大小,大约超过引起肌细胞膜动作电位所需阈值的3~4倍,因此神经肌接头处的兴奋传递通常是1对1的,亦即运动纤维每有一次神经冲动到达末梢,都能“可靠地”使肌细胞兴奋一次,诱发一次收缩;这一点与将来要讲的神经元之间的兴奋传递有明显不同(见第十章)。接头传递能保持1对1的关系,还要靠每一次神经冲动所释放的ACh能够在它引起一次肌肉兴奋后被迅速清除,否则它将持续作用于终板而使终板膜持续去极化,并影响下次到来的神经冲动的效应。已知,ACh的清除主要靠胆碱酯酶的降解作用来完成,此酶主要分布在接头间隙中和接头后膜上,它们大约可以在20ms的时间内将一次神经冲动所释放的ACh清除掉。许多药物可以作用于接头传递过程中的不同阶段,影响正常的接头功能。例如,美洲箭毒和α-银环蛇毒可以同ACh竞争终板膜的ACh受体亚单位,因而可以阻断接头传递而使肌肉失去收缩能力;有类似作用的药物称为肌肉松弛剂;有机磷农药和新斯的明对胆碱酯酶有选择性的抑制作用,可造成ACh在接头和其他部位的大量积聚,引起种种中毒症状。重症肌无力是由于体内骨骼肌终板处的ACh门控通道数量不足或功能障碍所引起。

建议楼主去这里看看http://hibaiducom/riyueheyi/blog/item/28c531278bdbb61f8a82a1fahtml

希望对您有帮助~

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/10134866.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-30
下一篇2023-10-30

发表评论

登录后才能评论

评论列表(0条)

    保存