答案:D
拱式体系的主要承重结构是拱肋(或拱箱),以承压为主,可采用抗压能力强的圬工材料(石、混凝土与钢筋混凝土)来修建。拱分单铰拱、双铰拱、三铰拱和无铰拱。拱是有水平推力的结构,对地基要求较高,一般常建于地基良好的地区。赵州桥属于三铰拱。
一 填空选择
1拱桥的主要组成上部结构,下部结构。上部结构主要由主拱圈和拱上建筑组成。拱上建筑包括桥面系和传力构件。主拱圈是拱桥的主要承重结构。拱桥的下部结构主要由桥墩,桥台,基础。主拱圈包括拱脚,拱顶,拱背,拱腹,拱轴线,起拱线。
2桥墩的稳定性验算
(1) 抗倾覆稳定性验算
(2) 抗滑动稳定性验算
3拱轴线:拱圈各横向截面的形心连线
4净跨径: 每孔拱跨两个起拱线之间的水平距离。
5计算跨径:拱轴线两端点之间的水平距离
6净矢高 拱顶截面下缘至起拱线连线的垂直距离。
7计算矢高 拱顶截面形心至相邻两拱脚截面形心之连线的垂直距离。
8矢跨比 净矢高与净跨径之比或计算矢高与计算跨径之比
9拱桥按照拱上建筑的形式分:实腹式拱桥和空腹式拱桥。按照主拱圈形式分:圆弧形拱桥,悬链线拱桥、抛物线拱桥。按照桥面位置分:上承式拱桥,中承式拱桥,下承式拱桥。按照有无水平分力分:有推力和无推力拱桥。按照结构受力图示分:简单体系拱桥,组合体系拱桥和拱片桥。按照拱圈截面形式分:板拱桥,板肋拱桥,肋拱桥,双曲拱桥,箱形拱桥,钢管混凝土拱桥和劲性骨架混凝土拱桥。
10 上承式拱桥分两类:1 普通式上承式拱桥(主拱圈,拱上传力构件,桥面系组成,主拱圈主要受力构件)2 整体型上承式拱桥(主拱片和桥面系组成,主拱片是主要承重结构)
11、双曲拱桥主拱圈主要由拱肋,拱波,拱板,横向联系四部分组成。
12桁架拱桥按结构不同分分:斜杆式,竖杆式,桁肋式和组合式四种。
13 拱上建筑中的填料:一方面扩大车辆荷载作用的面积,同时减小车辆荷载对拱圈的冲
击,但也增加了拱桥的恒载质量。填料厚度不宜小于30cm ,当填料厚度(包括桥面铺装厚度)等于或大于50cm 时,设计计算中不计车辆荷载的冲击力。
14 理想拱轴线:在各种荷载作用下拱圈截面只受轴向压力,而无弯矩作用。(事实上不存
在)
15 拱桥常用的拱轴线:圆弧线,悬链线,抛物线。
16悬链线拱轴线m 值一般采用“五点重合法”确定。
17桥梁墩(台)主要由:墩(台)帽,墩(台)身,基础三部分组成。
18 桥梁墩台总体上可分:重力式墩台,轻型墩台。墩台按其构造分实体墩台,空心墩台,柱式排架桩墩,柔性墩和框架墩五种。
19柔性排架桩墩由单排或双排的钢筋混凝土桩与钢筋混凝土盖梁连接而成。
20梁桥的桥台分重力式桥台和轻型桥台,组合式桥台和承拉桥台。
21桥墩计算中的作用:永久作用,可变作用,偶然作用。
22桩柱式桥墩的计算:盖梁计算,桩身计算
23盖梁计算:计算图式,外力计算,内力计算,配筋验算
24桩身计算:外力计算,内力计算,配筋验算,抗裂验算。
25有限元法:结构分析矩阵法的推广,将区域离散成更小的单元
二 简答题
1、 钢管混凝土拱桥的受力及优缺点
钢管混凝土属于钢——混凝土组合结构中的一种。它借助于内填混凝土增强钢管壁的稳
定性,同时又利用钢管对混凝土的套箍作用,使核心混凝土处于三向受压状态,从而使其具有更高的抗压强度和抗变形能力。
优点:承载能力高,塑性与韧性好,正常使用状态以应力控制设计,外表不存在混凝土裂缝问题。施工时吊装质量轻,施工简单,耐腐蚀性能与耐火性比钢构好。
缺点:对于管壁外露的钢管混凝土,在阳光下,钢管膨胀,容易造成钢管与内填混凝土之间出现脱空现象,施工中钢管先受力,造成钢管应力偏高而混凝土不能发挥应有作用
2 双曲拱桥施工工艺
施工时先将主拱圈划分为拱肋,拱波,拱板,横向联系四部分。并预制拱肋,拱波,横向联系。即化整为零。然后吊装拱肋与横向联系组成拱框架,然后在两个拱肋之间安装拱波,并浇筑拱板混凝土,形成主拱圈,即集零为整。
3双曲拱桥优缺点
优点:最大优点是提高了桥梁的强度和稳定性,双曲拱桥比同材料拱桥获得更大的跨径。造型上美观,舒展。
缺点:在施工中稳定性不足,断面抗弯性能较弱,难以适应大跨度和重载以及软土地基条件
4伸缩缝与变形缝
在相对变形较大的位置设置伸缩缝,而在相对变形较小的位置设置变形缝。
小跨径实腹拱:伸缩缝设置在拱脚的上方,并在横桥方向贯通全宽和侧墙的全高及至人行道。
拱式空腹拱桥:将紧靠墩台的第一个腹拱做成三铰拱,并在紧靠墩台的拱脚上方设置伸缩缝,贯通全桥宽,其余两拱上方设置变形缝。
梁式腹孔:桥台和墩顶立柱处设置标准伸缩缝。
伸缩缝宽2-3cm 缝内填料可用锯末屑与沥青按1:1比例制成预制板。
。
5拱桥中铰的设置
(1) 按两铰拱或三铰拱设置的主拱圈
(2) 按构造采用两铰拱或三铰拱的腹拱圈
(3) 需设置铰的矮小腹拱圈
(4) 消除或减小主拱圈的附加内力看,以及对主拱圈内力做适当调整时,需在拱脚
处设置临时铰
6拱桥的高程:桥面高程,拱顶底面高程,起拱线高程,基础底面高程。
桥面高程:由两岸线路的纵断面设计控制 拱顶地面高程:桥面高程减去拱顶处的建筑高度 起拱线高程:矢跨比确定 基础底面高程:冲刷深度,地基承载能力确定
7不等跨连续拱桥的处理方法
(5) 采用不同的矢跨比
(6) 采用不同的公交高程
(7) 调整拱上建筑的恒载质量
(8) 采用不同类型的拱跨结构
8拱轴线的选择
(1) 小跨径拱桥采用实腹式圆弧拱或实腹式悬链线拱。
(2) 大、中跨径拱桥采用空腹式悬链线拱
(3) 轻型拱桥或透空的大跨径拱桥可采用抛物线拱
9梁桥重力式桥墩作用效应组合
(1) 第一种组合:按桥墩各截面可能产生的最大竖向力进行组合
(2) 第二种组合:按桥墩各截面在顺桥方向可能产生的最大偏心和最大弯矩组合
(3) 第三种组合:按桥墩各截面在横桥方向可能产生最大偏心和最大弯矩组合 10墩台截面的强度验算
(1) 验算截面的选取
(2) 验算截面内力计算
(3) 承载能力极限状态验算
(4) 截面偏心验算
(5) 直接抗剪验算
。
按照拱上建筑的形式可以分为:实腹式拱桥及空腹式拱桥、组合体系式拱桥实腹式拱桥:是指拱上建筑作成实体结构,拱圈和主梁之间用石料或砌块填充的拱桥形式。优点是刚度比较大,构造简单,施工方便;缺 点是随着桥梁跨径的增大,拱桥的自重迅速加大,无法作成较大跨径的拱桥。一般用在跨径较小的拱桥中,常用跨径为20- 30m。空腹式拱桥:是指拱圈和主梁之间用立柱支撑。其优点是较实腹式拱桥轻巧,节省材料,外形美观,还有助于泄洪;缺点是施工比较麻烦, 受力较复杂。一般用在大跨径的桥梁中。组合体系式拱桥:由拱和梁组成主要承重结构的拱桥。通常用钢筋混凝土或钢结构建造。兼有实腹式拱桥和空腹式拱桥的优点, 跨越能力较大。 一般用在大、中跨度的桥梁中。 按照拱轴线的型式可分为:圆弧拱桥、抛物线拱桥、悬链线拱桥; 圆弧拱桥: 拱圈轴线按部分圆弧线设置的拱桥。优点构造简单,石料规格最少,备料、放样、施工都很简便;缺点是受荷时拱内压力线偏离拱轴线较大,受力不均匀。一般适用于跨度小于20m的石拱桥。 抛物线拱桥: 拱圈轴线按抛物线设置的拱桥,是悬链线拱桥的一种特例。优点是弯矩小,材料省,跨越能力较大;缺点是构造较复杂,如果是石拱桥则料石的规格较多,施工较不方便。 悬链线拱桥: 拱圈轴线按悬链线设置的拱桥。优点是受力均匀,弯矩不大,节省材料。多适用于实腹拱桥,大跨度的空腹拱桥中也常常采用这种线形布置。 按照有无水平推力可分为:有推力拱桥、无推力拱桥; 无推力拱桥: 在竖向荷载作用下拱脚对墩台无水平推力作用的拱桥。其推力由刚性梁或柔性杆件承受,属于内部超静定、外部静定的组合体系拱桥。适用于地质不良的桥位处,墩台与梁式桥基本相似,体积较大,只能做成下承式桥,建筑高度很小,桥面标高可设计的很低,降低纵坡,减小引桥长度,因此可以节约材料。但是,结构的施工比较复杂。 有推力拱桥: 在竖向荷载作用下拱脚对墩台有水平推力作用的拱桥。水平推力可减小跨中弯矩,能建成大跨度的桥梁。造型美观,城市桥梁一般优先选用,可做成上承式、中承式桥。缺点是,对地质要求很高,为防止墩台移动或转动,墩台须设计很大,施工较麻烦。 按照建筑材料的不同可分为:石拱桥、混凝土拱桥、钢拱桥; 石拱桥: 用石料建造的拱桥,外形美观,养护简便,并可以就地取材,以减低造价。缺点是自重大,跨越能力有限,石料的开采、加工 河砌筑均需要较多的劳动力,且工期较长。一般用于小跨径桥梁。 混凝土拱桥: 用混凝土建造的拱桥,包括素混凝土和钢筋混凝土两类。其优点是加工和制造较石拱桥方便,工期短;缺点是由于混凝土 抗拉 强度很低,故其跨越能力小,且混凝土耗费量大。一般用于小跨径桥梁。 钢拱桥: 上部结构用钢材建造的拱桥类型。其优点是跨越能力大,且自重是三种拱桥中最轻的;缺点是结构复杂,由于三铰拱钢拱桥一般 不用,所以对地基要求高,造价高,且维护费用高。适用于大跨度桥梁中。 按照铰的多少可分为:两铰、三铰、无铰。 三铰拱: 在拱冠与拱端处均设铰的拱桥,属于静定结构。优点是对混凝土收缩、徐变、温度变化,以及墩台位移不受影响,适用于地质条件差而要求修建大跨度桥的场合。缺点是结构复杂,施工麻烦,维护费用高,整体刚度差,由因三处设置铰,故对应的桥面处亦需设置构造缝;拱圈挠曲在铰处急剧变化,因而对行车不利。所以,我国仅在一些较小跨径的桥上采用。 两铰拱: 拱圈中间无铰而两端设铰与墩台铰接的拱桥,属于外部一次超静定结构。其优点是,拱脚处不承受弯矩,较无铰拱桥可减小混凝土收缩、徐变,温度变化,以及墩台位移的影响。缺点是,构造较复杂,对应的桥面处应设置构造缝,施工亦较麻烦,对地基要求比较高,但较无铰拱对地基要求略低。 无铰拱: 又称固端拱桥。拱圈两端嵌固在桥墩上而中间无铰的拱桥,属于外部三次超静定结构。优点是,较有铰拱桥桥内的弯矩分布合理,材料用量较省,结构刚度大,结构简单,施工方便,维护费用少,还可以将拱脚设计在洪水位以下,有利于降低桥面的设计标高,具有较好的经济与使用效益。缺点是,对混凝土收缩、徐变、温度变化,以及墩台位移最敏感,会产生附加应力,应建设在可靠的地基上。
发展历史
桥梁是道路的组成部分。从工程技术的角度来看,桥梁发展可分为古代、近代和现代三个时期。 桥
古代桥梁
人类在原始时代,跨越水道和峡谷,是利用自然倒下来的树木,自然形成的石梁或石拱,溪涧突出的石块,谷岸生长的藤萝等。人类有目的地伐木为桥或堆石、架石为桥始于何时,已难以考证。据史料记载,中国在周代(公元前11世纪~前256年)已建有梁桥和浮桥,如公元前1134年左右,西周在渭水架有浮桥。古巴比伦王国在公元前1800年建造了多跨的木桥,桥长达183米。古罗马在公元前621年建造了跨越台伯河的木桥,在公元前 481年架起了跨越赫勒斯旁海峡的浮船桥。古代美索不达米亚地区,在公元前 4世纪时建起挑出石拱桥(拱腹为台阶式)。 古代桥梁在17世纪以前,一般是用木、石材料建造的,并按建桥材料把桥分为石桥和木桥。 石桥 石桥的主要形式是石拱桥。据考证,中国早在东汉时期(公元25~220年)就出现石拱桥,如出土的东汉画像砖,刻有拱桥图形。现在尚存的赵州桥(又名安济桥),建于公元605~617年,净跨径为37米,首创在主拱圈上加小腹拱的空腹式(敞肩式)拱。中国古代石拱桥拱圈和墩一般都比较薄,比较轻巧,如建于公元816~819年的宝带桥,全长317米,薄墩扁拱,结构精巧。 罗马时代,欧洲建造拱桥较多,如公元前200~公元200年间在罗马台伯河建造了8座石拱桥,其中建于公元前62年的法布里西奥石拱桥,桥有2孔,各孔跨径为244米。公元98年西班牙建造了阿尔桥,高达52米。 赵州桥
此外,出现了许多石拱水道桥,如现存于法国的加尔德引水桥,建于公元前1世纪,桥分为3层,最下层为7孔,跨径为16~24米。罗马时代拱桥多为半圆拱,跨径小于25米,墩很宽,约为拱跨的三分之一 罗马帝国灭亡后数百年,欧洲桥梁建筑进展不大。11世纪以后,尖拱技术由中东和埃及传到欧洲,欧洲开始出现尖拱桥,如法国在公元1178~1188年建成的阿维尼翁桥,为20孔跨径达34米尖拱桥。英国在公元1176~1209年建成的泰晤士河桥为19孔跨径约 7米尖拱桥。西班牙在13世纪建了不少拱桥,如托莱多的圣玛丁桥。拱桥除圆拱、割圆拱外,还有椭圆拱和坦拱。公元1542~1632年法国建造的皮埃尔桥为七孔不等跨椭圆拱,最大跨径约32米。当时椭圆拱曾盛行一时。1567~1569在佛罗伦萨的圣特里尼塔建了三跨坦拱桥,其矢高同跨度比为1∶7。11~17世纪建造的桥,有的在桥面两侧设商店,如意大利威尼斯的里亚尔托桥。 石梁桥是石桥的又一形式。中国陕西省西安附近的灞桥原为石梁桥,建于汉代,距今已有2000多年。公元11~12世纪南宋泉州地区先后建造了几十座较大型石梁桥,其中有洛阳桥、安平桥。安平桥(五里桥)原长2500米,362孔,现长2070米,332孔。英国达特穆尔现存的石板桥,有的已有2000多年。 木桥 早期木桥多为梁桥,如秦代在渭水上建的渭桥,即为多跨梁式桥。木梁桥跨径不大,伸臂木桥可以加大跨径。中国 3世纪在甘肃安西与新疆吐鲁番交界处建有伸臂木桥,“长一百五十步”。公元405~418年在甘肃临夏附近河宽达40丈处建悬臂木桥,桥高达50丈。八字撑木桥和拱式撑架木桥亦可以加大跨径。16世纪意大利的巴萨诺桥为八字撑木桥。 木拱桥 出现较早,公元104年在匈牙利多瑙河建成的特拉杨木拱桥,共有21孔,每孔跨径为36米。中国在河南开封修建的虹桥,净跨约为20米,亦为木拱桥,建于公元1032年。日本在岩国锦川河修建的锦带桥为五孔木拱桥,建于公元300年左右,是中国僧戴曼公独立禅 桥
师帮助修建的。 中国西南地区有用竹篾缆造的竹索桥。著名的竹索桥是四川灌县珠浦桥,桥为8孔,最大跨径约60米,总长330余米,建于宋代以前。 古代桥梁基础,在罗马时代开始采用围堰法施工,即打木板桩成围堰,抽水后在其中修筑桥梁基础和桥墩。1209年建成的英国泰晤士河拱桥,其基础就是用围堰法修筑,但是,那时只能用人工打桩和抽水,基础较浅。中国11世纪初,著名的洛阳桥在桥址江中先遍抛石块,其上养殖牡蛎二三年后胶固而成筏形基础,是一个创举。
近代桥梁
18世纪铁的生产和铸造,为桥梁提供了新的建造材料。但铸铁抗冲击性能差,抗拉性能也低,易断裂,并非良好的造桥材料。19世纪50年代以后,随着酸性转炉炼钢和平炉炼钢技术的发展,钢材成为重要的造桥材料。钢的抗拉强度大,抗冲击性能好,尤其是19世纪70年代出现钢板和矩形轧制断面钢材,为桥梁的部件在厂内组装创造了条件,使钢材应用日益广泛。 18世纪初,发明了用石灰、粘土、赤铁矿混合煅烧而成的水泥。19世纪50年代,开始采用在混凝土中放置钢筋以弥补水泥抗拉性能差的缺点。此后,于19世纪70年代建成了钢筋混凝土桥。 近代桥梁建造,促进了桥梁科学理论的兴起和发展。1857年由圣沃南在前人对拱的理论、静力学和材料力学研究的基础上,提出了较完整的梁理论和扭转理论。这个时期连续梁和悬臂梁的理论也建立起来。桥梁桁架分析(如华伦桁架和豪氏桁架的分析方法)也得到解决。19世纪70年代后经德国人K库尔曼、英国人WJM兰金和JC麦克斯韦等人的努力,结构力学获得很大的发展,能够对桥梁各构件在荷载作用下发生的应力进行分析。这些理论的发展,推动了桁架、连续梁和悬臂梁的发展。19世纪末,弹性拱理论已较完善,促进了拱桥发展。20世纪20年代土力学的兴起,推动了桥梁基础的理论研究。 近代桥梁按建桥材料划分,除木桥、石桥外,还有铁桥、钢桥、钢筋混凝土桥。 木桥 16世纪前已有木桁架。1750年在瑞士建成拱和桁架组合的木桥多座,如赖谢瑙桥,跨径为73米。在18世纪中叶至19世纪中叶,美国建造了不少木桥,如1785年在佛蒙特州贝洛兹福尔斯的康涅狄格河建造的第一座木桁架桥,桥共二跨,各长55米;1812年在费城斯库尔基尔河建造的拱和桁架组合木桥,跨径达104米。桁架桥省掉拱和斜撑构,简化了结构,因而被广泛应用。由于桁架理论的发展,各种形式桁架 桥
木桥相继出现,如普拉特型、豪氏型、汤氏型等。由于木结构桥用铁件量很多,不如全用铁经济,因此,19世纪后期木桥逐渐为钢铁桥所代替。 铁桥 包括铸铁桥和锻铁桥。铸铁性脆,宜于受压,不宜受拉,适宜作拱桥建造材料。世界上第一座铸铁桥是英国科尔布鲁克代尔厂所造的塞文河桥,建于1779年,为半圆拱,由五片拱肋组成,跨径307米。锻铁抗拉性能较铸铁好,19世纪中叶跨径大于60~70米的公路桥都采用锻铁链吊桥。铁路因吊桥刚度不足而采用桁桥,如1845~1850年英国建造布列坦尼亚双线铁路桥,为箱型锻铁梁桥。19世纪中以后,相继建立起梁的定理和结构分析理论,推动了桁架桥的发展,并出现多种形式的桁梁。但那时对桥梁抗风的认识不足,桥梁一般没有采取防风措施。1879年12月大风吹倒才建成18个月的阳斯的泰湾铁路锻铁桥,就是由于桥梁没有设置横向连续抗风构。 中国于1705年修建了四川大渡河泸定铁链吊桥。桥长100米,宽28米,至今仍在使用。欧洲第一座铁链吊桥是英国的蒂斯河桥,建于1741年,跨径20米,宽063米。1820~1826年,英国在威尔士北部梅奈海峡修建一座中孔长 177米用锻铁眼杆的吊桥。这座桥由于缺乏加劲梁或抗风构,于1940年重建。世界上第一座不用铁链而用铁索建造的吊桥,是瑞士的弗里堡桥,建于1830~1834年、桥的跨径为 233米。这座桥用2000根铁丝就地放线,悬在塔上,锚固于深18米的锚碇坑中。 1855年,美国建成尼亚加拉瀑布公路铁路两用桥这座桥是采用锻铁索和加劲梁的吊桥,跨径为250米。1869~1883年,美国建成纽约布鲁克林吊桥,跨度为283+486+283米。这些桥的建造,提供了用加劲桁来减弱震动的经验。此后,美国建造的长跨吊桥,均用加劲梁来增大刚度,如1937年建成的旧金山金门桥(主孔长为1280米,边孔为344米,塔高为228米),以及同年建成的旧金山奥克兰海湾桥(主孔长为704米,边孔为354米,塔高为152米),都是采用加劲梁的吊桥。 1940年,美国建成的华盛顿州塔科玛海峡桥,桥的主跨为853米,边孔为335米,加劲梁高为274米,桥宽为119米。这座桥于同年11月7日,在风速仅为 675公里/小时的情况下,中孔及边孔便相继被风吹垮。这一事件,促使人们研究空气动力学同桥梁稳定性的关系。 钢桥 美国密苏里州圣路易市密西西比河的伊兹桥,建于1867~1874年,是早期建造的公路铁路两用无铰钢桁拱桥,跨径为153+158+153米。这座桥架设时采用悬臂安装的新工艺,拱肋从墩两侧悬出,由墩上临时木排架的吊索拉住,逐节拼接,最后在跨中将两半拱连接。基础用气压沉箱下沉33米到岩石层。气压沉箱因没有安全措施,发生119起严重沉箱病,14人死亡。19世纪末弹性拱理论已逐步完善,促进了20世纪20~30年代修建较大跨钢拱桥,较著名的有:纽约的岳门桥,建成于1917年,跨径305米;纽约贝永桥,建成于1931年,跨径504米;澳大利亚悉尼港桥,建成于1932年,跨径503米。3座桥均为双铰钢桁拱。 19世纪中期出现了根据力学设计的悬臂梁。英国人根据中国西藏木悬臂桥式,提出锚跨、悬臂和悬跨三部分的组合设想,并于1882~1890年在英国爱丁堡福斯河口建造了铁路悬臂梁桥。这座桥共有6个悬臂, 桥
悬臂长为206米,悬跨长为107米,主跨长为519米。20纪初期,悬臂梁桥曾风行一时,如1901~1909年美国建造的纽约昆斯堡桥,是一座中间锚跨为190米、悬臂为 150和180米、无悬跨、由铰联结悬臂、主跨为300米和360米的悬臂梁桥。1900~1917年建造的加拿大魁北克桥也是悬臂钢桥。1933年建成的丹麦小海峡桥为五孔悬臂梁公路铁路两用桥,跨径为13750+165+200+165+1375米。 1896年比利时工程师菲伦代尔发明了空腹桁架桥。比利时曾经造了几座铆接和电焊的空腹桁架桥。 钢筋混凝土桥 1875~1877年,法国园艺家莫尼埃建造了一座人行钢筋混凝土桥,跨径16米,宽4米。1890年,德国不莱梅工业展览会上展出了一座跨径40米的人行钢筋混凝土拱桥。1898年,修建了沙泰尔罗钢筋混凝土拱桥。这座桥是三铰拱,跨径52米。1905年,瑞士建成塔瓦纳萨桥,跨径51米,是一座箱形三铰拱桥,矢高55米。1928年,英国在贝里克的罗亚尔特威德建成 4孔钢筋混凝土拱桥,最大跨径为110米。1934年,瑞典建成跨径为181米、矢高为262米的特拉贝里拱桥;1943年又建成跨径为264米、矢高近40米的桑德拱桥。 桥梁基础施工,在18世纪开始应用井筒,英国在修威斯敏斯特拱桥时,木沉井浮运到桥址后,先用石料装载将其下沉,而后修基础及墩。1851年,英国在肯特郡的罗切斯特处修建梅德韦桥时,首次采用压缩空气沉箱。1855~1859年,在康沃尔郡的萨尔塔什修建罗亚尔艾伯特桥时,采用直径11米的锻铁筒,在筒下设压缩空气沉箱。1867年,美国建造伊兹河桥,也用压缩空气沉箱修建基础。压缩空气沉箱法施工,工人在压缩空气条件下工作,若工作时间长,或从压缩气箱中未经减压室骤然出来,或减压过快,易引起沉箱病。 1845年以后,蒸汽打桩机开始用于桥梁基础施工。
现代桥梁
20世纪30年代,预应力混凝土和高强度钢材相继出现,材料塑性理论和极限理论的研究,桥梁振动的研究和空气动力学的研究,以及土力学的研究等获得了重大进展。从而,为节约桥梁建筑材料,减轻桥重,预计基础下沉深度和确定其承载力提供了科学的依据。现代桥梁按建桥材料可分为预应力钢筋混凝土桥、钢筋混凝土桥和钢桥。 预应力钢筋混凝土桥 1928年,法国弗雷西内工程师经过20年的研究,用高强钢丝和混凝土制成预应力钢筋混凝土。这种材料,克服了钢筋混凝土易产生裂纹的缺点,使桥梁可以用悬臂安装法、顶推法施工。随着高强钢丝和高强混凝土的不断发展,预应力钢筋混凝土桥的结构不断改进,跨度不断提高。 预应力钢筋混凝土桥有简支梁桥、连续梁桥、悬臂梁桥、拱桥、桁架桥、刚架桥、斜拉桥等桥型。简支梁桥的跨径多在50米以下。连续梁桥如1966年建成的法国奥莱隆桥,是一座预应力混凝土连续梁高架桥,共有26孔,每孔跨径为79米。1982年建成的美国休斯敦船槽桥,是一座中跨229米的预应力混凝土连续梁高架桥,用平衡悬臂法施工。悬臂梁桥如1964年联邦德国在柯布伦茨建成的本多夫桥,其主跨为209米;1976年建成的日本滨名桥,主跨240米;中国1980年完工的重庆长江桥,主跨174米。桁架桥如1960年建成的联邦德国芒法尔河谷桥,跨径为 90+108+90米,是世界上第一座预应力混凝土桁架桥。1966年苏联建成一座预应力混凝土桁架式连续桥,跨径为106+3×166+106米,用浮运法施工刚架桥如1957年建成的法国图卢兹的圣米歇尔桥,是一座160米、5~65米的预应力混凝土刚架桥;1974年建成的法国博诺姆桥,主跨径为18625米,是目前最大跨径预应力混凝土刚架桥。预应力钢筋混凝土吊桥是将预应力梁中的预应力钢丝索作为悬索,并同加劲梁构成自锚式体系,1963年建成的比利时根特的梅勒尔贝克桥和玛丽亚凯克桥,主跨径分别为 56米和100米,就是预应力钢筋混凝土吊桥。斜拉桥如1962年建成委内瑞拉的马拉开波湖桥。这座桥为5孔235米连续梁,由悬在 A形塔的预应力斜拉索将悬臂梁吊起。斜拉桥的梁是悬在索形成的多弹性支承上,能减少梁高,且能提高桥的抗风和抗扭转震动性能,并可利用拉索安装主梁,有利于跨越大河,因而应用广泛。预应力混凝土斜拉桥如1971年利比亚建造的瓦迪库夫桥,主跨径282米;1978年美国建造的华盛顿州哥伦比亚河帕斯科-肯纳威克桥,主跨299米;1977年法国建造的塞纳河布罗东纳桥,主跨320米。中国已建成十多座预应力混凝土斜拉桥,其中1982年建成的山东济南黄河桥主跨为220米。 钢筋混凝土桥 二次世界大战以后,世界上修建了多座较大跨径的钢筋混凝土拱桥,如1963年通车的葡萄牙亚拉达拱桥,跨径为270米,矢高50米;1964年完工的澳大利亚悉尼港的格莱兹维尔桥,跨径305米。 中国1964年创造钢筋混凝土双曲拱桥。桥由拱肋和拱波组成,纵向和横向均有曲度,横向也用拱波形式。拱肋和拱波分段预制,因此可用轻型吊装设施安装。这样,在缺乏重型运输工具和重型吊装机具下,也可以修建较大跨径拱桥。第一座试验双曲拱桥,建于中国江苏无锡,跨径为9米。此后,1972年建成湖南长沙湘江大桥,是一座16孔双曲拱桥,大孔跨径为60米,小孔跨径为50米,总长1250米。 钢筋混凝土桁架拱桥是拱和桁架组合而成的结构,其用料少,重量轻,施工简易。 钢桥 二次世界大战后,随着强度高、韧性好、抗疲劳和耐腐蚀性能好的钢材的出现,以及用焊接平钢板和用角钢、板钢材等加劲所形成轻而高强的正交异性板桥面的出现,高强度螺栓的应用等,钢桥有很大发展。 钢板梁和箱形钢梁同混凝土相结合的桥型,以及把正交异性板桥面同箱形钢梁相结合的桥型,在大、中跨径的桥梁上广泛运用。1951年联邦德国建成的杜塞尔多夫至诺伊斯桥,是一座正交异性板桥面箱形梁,跨径206米。1957年联邦德国建成的杜塞尔多夫北桥,是座6孔72米钢板梁结交梁桥。1957年南斯拉夫建成的贝尔格莱德的萨瓦河桥,是一座钢板梁桥,跨径为75+261+75米,为倒U形梁。1973年法国建成的马蒂格斜腿刚架桥,主跨为300米。1972年意大利建成的斯法拉沙桥,跨径达376米,是目前世界上跨径最大的钢斜腿刚架桥。1966年美国完工的俄勒冈州阿斯托里亚桥,是一座连续钢桁架桥,跨径达376米。1966年日本建成的大门桥,是一座连续钢桁架桥,跨径达300米。1968年中国建成的南京长江桥,是一座公路铁路两用的连续钢桁架桥,正桥为128+9×160+128米,全桥长6公里。1972年日本建成的大阪港的港大桥为悬臂梁钢桥,桥长980米,由235米锚孔和162米悬臂、186米悬孔所组成1964年美国建成的纽约维拉扎诺吊桥,主孔1298米,吊塔高210米。1966年英国建成的塞文吊桥,主孔985米。这座桥根据风洞试验,首次采用梭形正交异性板箱形加劲梁,梁高只有305米。1980年英国完工的恒比尔吊桥,主跨为1410米,也用梭形正交异性板箱形加劲梁,梁高只有3米。 20世纪60年代以后,钢斜拉桥发展起来。第一座钢斜拉桥是瑞典建成的斯特伦松德海峡桥,建于1956年,跨径为 747+1826+747米。这座桥的斜拉索在塔左右各两根,由钢筋混凝土板和焊接钢板梁组合作为纵梁1959年联邦德国建成的科隆钢斜拉桥,主跨为334米;1971年英国建成的厄斯金钢斜拉桥,主跨305米;1975年法国建成的圣纳泽尔桥,主跨404米。这座桥的拉索采用密束布置,使节间长度减少,梁高减低,梁高仅338米。目前通过对钢斜拉桥抗风抗震性能的改进,其跨径正在逐渐增大。 钢桥的基础多用大直径桩或薄壁井筒建造。
编辑本段中国桥梁历史
历史和现状上看,绝大多数桥梁均架设在水面上,只有阁道桥和现代城市的行人天桥和行车天桥,是架设于高楼崇阁之间或通衢大道之上。 从对天生桥的利用到人工造桥,这是一个历史的飞跃过程。从简单的独木桥到今天的钢铁大桥;从单一的梁桥到浮桥、索桥、拱桥、园林桥、栈道桥、纤道桥等;建桥的材料从以木料为主,到以石料为主,再到以钢铁和钢筋混凝土为主,这是一个非常漫长的发展过程。然而,中国桥梁建筑都取得了惊人的成就。 著名的科学技术史学家、英国剑桥大学李约瑟博士( J Needham )在《中国科学技术史》中说,中国桥梁“在宋代有一个惊人的发展,造了一系列巨大的板梁桥”。到了当代中国,所建造的武汉、南京长江大桥等,更受到世人称赞。可见,中国的桥梁,经过了一个从童年、少年、青年到壮年的发展过程,愈趋成熟。中国在发展桥梁方面于 14 世纪以前处于领先地位,今天,她依然是世界上举足轻重的桥梁大国。
答案:B
A项,相对变形较大的位置设置伸缩缝,而在变形较小之处设置变形缝。B项,空腹式拱桥的腹拱靠近墩的一孔应做成二铰拱或三铰拱,大跨径拱桥必要的可将靠拱顶的腹拱或其他腹拱做成三铰拱或二铰拱。C项,二铰拱为一次超静定结构,整体刚度比三铰拱大,在因地基条件较差而不宜修建无铰拱时,可考虑采用二铰拱。D项,三铰拱属于静定结构,不会在拱内产生附加内力。在软土等不良地基上宜采用三铰拱。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)