人工智能产品的定义较为广泛,智能硬件、机器人、芯片、语音助手等都可以叫做人工智能产品。本文讨论的人工智能产品主要是指在互联网产品中运用人工智能技术。
互联网产品主要着手与解决用户的痛点,对于C端产品来说,痛点就是指的个人想解决而无法解决的问题,如个人想要美化自己的照片,但是他不会复杂的PS软件,于是美图秀秀就可以解决这个痛点。从KANO模型中,就是满足用户的基本需求与期望需求。
人工智能产品(在互联网产品中运用人工智能技术)则是要满足用户的兴奋需求。如将情感分析运用到电商的产品评论中,用户则可以通过可视化的数据展示来大致对产品有个全面、直观的了解,而不再需要自己一页一页的翻看评论内容。
互联网产品主要关注点在于用户需求、流程设计、交互设计、商业模式等。着眼于用户需求,设计满足用户需求的产品,通过合理的流程设计、交互设计达到产品目标,进而实现商业目标。典型的思路是发现用户需求——>设计满足用户需求的产品——>迭代完善、产品运营——>商业变现。
人工智能产品关注点在于模型的构建,它不再是对于布局、交互的推敲,而是通过选择合适的数据,构建合适的模型,最终呈现出来的是好的效果。什么是好的效果呢?这就需要引入评测指标。互联网的评测指标有我们熟知的留存率、转化率、日活跃等,那么人工智能的产品主要是通过一些统计指标来描述,以情感分析为例,把情感分析看成一个分类问题,则可以使用P、R、A、F值来描述。
1)查准率(Precision):P值,衡量某类分类中识别正确的比例,如情感分析中,有10条被分类为“正向”,其中8条是分类正确的(由人工审核),那么P=8/10=80%
2)查全率(Recall):R值,又叫查全率,又叫召回度,指的是某类被被正确分类的比例,同样以情感分析为例,100条数据中有10条是正向的,机器分类后,这10条中有7条被分类为正向,则R=7/10=70%
3)F值,因为P值和R值通常是两个相互矛盾的指标,即一个越高另一个越低,F则是两者综合考虑的指标,不考虑调节P、R权重的情况下,F=2PR/(P+R)
4)精确度(Accuracy):这个最好理解,就是被准确分类的比例,也就是正确率。如100条数据,90条是被正确分类的,则A=90/100=90%。
以上指标越高,说明模型效果越好。
我们从上面内容可以知道,人工智能产品设计关注:数据——>模型——>效果评估。
现在我们以情感分析为例子说明产品设计的过程。
1)数据:
数据的选择对最终模型的结果有直接影响,情感分析,根据不同的目的,选择的数据也不同。如将情感分析运用于**票房预测,则一些更新及时、内容丰富的数据源,如微博,是比较好的选择。如果是应用于商品的评价,如电子产品,很多评测内容是无法在短短几句话内描述清楚的,这时候微博不是个好的选择,选择论坛上更新较慢、但是详细的内容就比较适合。
如果能在产品的早期就有引入人工智能的打算,则可以在产品中事先做好数据采集。
2)模型:
在选择模型中,产品需要了解不同的模型的优缺点,进而选择更加合适的模型。在情感分析中,NB、SVM、N-gram都是常用的模型,其中SVM效果最好(这是已有的结论),如果是其他的智能产品,可能需要算法团队进行实验,给出测试数据,进而选择合适的模型。
3)效果评估:
效果评估在上文中已经描述得比较清楚,具体指标不再赘述。
4)产品呈现:
最后这一步,是将结果展示给用户。在情感分析中,我们可以选择雷达图、词云、情感趋势图来展示结果。取决于产品属性,如电商产品评论挖掘,可以使用词云;
如舆论分析,可以使用情感趋势图。
人工智能产品的设计要关注:数据、模型、评判、呈现。
传统的人机交互,主要通过键盘、鼠标、屏幕等方式进行,只追求便利和准确,无法理解和适应人的情绪或心境。而如果缺乏这种情感理解和表达能力,就很难指望计算机具有类似人一样的智能,也很难期望人机交互做到真正的和谐与自然。由于人类之间的沟通与交流是自然而富有感情的,因此,在人机交互的过程中,人们也很自然地期望计算机具有情感能力。情感计算(Affective Computting)就是要赋予计算机类似于人一样的观察、理解和生成各种情感特征的能力,最终使计算机像人一样能进行自然、亲切和生动的交互。 有关人类情感的深入研究,早在19世纪末就进行了。然而,除了科幻小说当中,过去极少有人将“感情”和无生命的机器联系在一起。只有到了现代,随着数字信息技术的发展,人们才开始设想让机器(计算机)也具备“感情”。从感知信号中提取情感特征,分析人的情感与各种感知信号的关联,是国际上近几年刚刚兴起的研究方向(图1)。
人的情绪与心境状态的变化总是伴随着某些生理特征或行为特征的起伏,它受到所处环境、文化背景、人的个性等一系列因素的影响。要让机器处理情感,我们首先必须探讨人与人之间的交互过程。那么人是如何表达情感,又如何精确地觉察到它们的呢?人们通过一系列的面部表情、肢体动作和语音来表达情感,又通过视觉、听觉、触觉来感知情感的变化。视觉察觉则主要通过面部表情、姿态来进行;语音、音乐则是主要的听觉途径;触觉则包括对爱抚、冲击、汗液分泌、心跳等现象的处理。
情感计算研究的重点就在于通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建感知、识别和理解人类情感的能力,并能针对用户的情感做出智能、灵敏、友好反应的个人计算系统,缩短人机之间的距离,营造真正和谐的人机环境(图2)。 在生活中,人们很难保持一种僵硬的脸部表情,通过脸部表情来体现情感是人们常用的较自然的表现方式,其情感表现区域主要包括嘴、脸颊、眼睛、眉毛和前额等。人在表达情感时,只稍许改变一下面部的局部特征(譬如皱一下眉毛),便能反映一种心态。在1972年,著名的学者Ekman提出了脸部情感的表达方法(脸部运动编码系统FACS)。通过不同编码和运动单元的组合,即可以在脸部形成复杂的表情变化,譬如幸福、愤怒、悲伤等。该成果已经被大多数研究人员所接受,并被应用在人脸表情的自动识别与合成(图3)。
随着计算机技术的飞速发展,为了满足通信的需要,人们进一步将人脸识别和合成的工作融入到通信编码中。最典型的便是MPEG4 V2视觉标准,其中定义了3个重要的参数集:人脸定义参数、人脸内插变换和人脸动画参数。表情参数中具体数值的大小代表人激动的程度,可以组合多种表情以模拟混合表情。
在目前的人脸表情处理技术中,多侧重于对三维图像的更加细致的描述和建模。通常采用复杂的纹理和较细致的图形变换算法,达到生动的情感表达效果。在此基础上,不同的算法形成了不同水平的应用系统(图4,图5) 人的姿态一般伴随着交互过程而发生变化,它们表达着一些信息。例如手势的加强通常反映一种强调的心态,身体某一部位不停地摆动,则通常具有情绪紧张的倾向。相对于语音和人脸表情变化来说,姿态变化的规律性较难获取,但由于人的姿态变化会使表述更加生动,因而人们依然对其表示了强烈的关注。
科学家针对肢体运动,专门设计了一系列运动和身体信息捕获设备,例如运动捕获仪、数据手套、智能座椅等。国外一些著名的大学和跨国公司,例如麻省理工学院、IBM等则在这些设备的基础上构筑了智能空间。同时也有人将智能座椅应用于汽车的驾座上,用于动态监测驾驶人员的情绪状态,并提出适时警告。意大利的一些科学家还通过一系列的姿态分析,对办公室的工作人员进行情感自动分析,设计出更舒适的办公环境。 在人类的交互过程中,语音是人们最直接的交流通道,人们通过语音能够明显地感受到对方的情绪变化,例如通过特殊的语气词、语调发生变化等等。在人们通电话时,虽然彼此看不到,但能从语气中感觉到对方的情绪变化。例如同样一句话“你真行”,在运用不同语气时,可以使之成为一句赞赏的话,也可以使之成为讽刺或妒忌的话。
目前,国际上对情感语音的研究主要侧重于情感的声学特征的分析这一方面。一般来说,语音中的情感特征往往通过语音韵律的变化表现出来。例如,当一个人发怒的时候,讲话的速率会变快,音量会变大,音调会变高等,同时一些音素特征(共振峰、声道截面函数等)也能反映情感的变化。中国科学院自动化研究所模式识别国家重点实验室的专家们针对语言中的焦点现象,首先提出了情感焦点生成模型。这为语音合成中情感状态的自动预测提供了依据,结合高质量的声学模型,使得情感语音合成和识别率先达到了实际应用水平。 虽然人脸、姿态和语音等均能独立地表示一定的情感,但人在相互交流的过程中却总是通过上面信息的综合表现来进行的。所以,惟有实现多通道的人机界面,才是人与计算机最为自然的交互方式,它集自然语言、语音、手语、人脸、唇读、头势、体势等多种交流通道为一体,并对这些通道信息进行编码、压缩、集成和融合,集中处理图像、音频、视频、文本等多媒体信息。
目前,多模态技术本身也正在成为人机交互的研究热点,而情感计算融合多模态处理技术,则可以实现情感的多特征融合,能够有力地提高情感计算的研究深度,并促使出现高质量、更和谐的人机交互系统。
在多模态情感计算研究中,一个很重要的研究分支就是情感机器人和情感虚拟人的研究。美国麻省理工学院、日本东京科技大学、美国卡内基·梅隆大学均在此领域做出了较好的演示系统。目前中科院自动化所模式识别国家重点实验室已将情感处理融入到了他们已有的语音和人脸的多模态交互平台中,使其结合情感语音合成、人脸建模、视位模型等一系列前沿技术,构筑了栩栩如生的情感虚拟头像,并正在积极转向嵌入式平台和游戏平台等实际应用(图6)。 情感状态的识别和理解,则是赋予计算机理解情感并做出恰如其分反应的关键步骤。这个步骤通常包括从人的情感信息中提取用于识别的特征,例如从一张笑脸中辨别出眉毛等,接着让计算机学习这些特征以便日后能够准确地识别其情感。
为了使计算机更好地完成情感识别任务,科学家已经对人类的情感状态进行了合理而清晰的分类,提出了几类基本情感。目前,在情感识别和理解的方法上运用了模式识别、人工智能、语音和图像技术的大量研究成果。例如:在情感语音的声学分析的基础上,运用线性统计方法和神经网络模型,实现了基于语音的情感识别原型;通过对面部运动区域进行编码,采用HMM等不同模型,建立了面部情感特征的识别方法;通过对人姿态和运动的分析,探索肢体运动的情感类别等等。
不过,受到情感信息的捕获技术的影响,并缺乏大规模的情感数据资源,有关多特征融合的情感理解模型的研究还有待深入。随着未来的技术进展,还将提出更有效的机器学习机制。 情感计算与智能交互技术试图在人和计算机之间建立精确的自然交互方式,将会是计算技术向人类社会全面渗透的重要手段。未来随着技术的不断突破,情感计算的应用势在必行,其对未来日常生活的影响将是方方面面的,目前我们可以预见的有:
情感计算将有效地改变过去计算机呆板的交互服务,提高人机交互的亲切性和准确性。一个拥有情感能力的计算机,能够对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们便于理解自己和他人的情感世界。
它还能帮助我们增加使用设备的安全性(例如当采用此类技术的系统探测到司机精力不集中时可以及时改变车的状态和反应)、使经验人性化、使计算机作为媒介进行学习的功能达到最佳化,并从我们身上收集反馈信息。例如,一个研究项目在汽车中用电脑来测量驾车者感受到的压力水平,以帮助解决所谓驾驶者的“道路狂暴症”问题。
情感计算和相关研究还能够给涉及电子商务领域的企业带来实惠。已经有研究显示,不同的图像可以唤起人类不同的情感。例如,蛇、蜘蛛和枪的能引起恐惧,而有大量美元现金和金块的则可以使人产生非常强烈的积极反应。如果购物网站和股票交易网站在设计时研究和考虑这些因素的意义,将对客流量的上升产生非常积极的影响。
在信息家电和智能仪器中,增加自动感知人们的情绪状态的功能,可以提供更好的服务。
在信息检索应用中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。
在远程教育平台中,情感计算技术的应用能增加教学效果。
利用多模式的情感交互技术,可以构筑更贴近人们生活的智能空间或虚拟场景等等。
情感计算还能应用在机器人、智能玩具、游戏等相关产业中,以构筑更加拟人化的风格和更加逼真的场景。 由于缺乏较大规模的情感数据资源,情感计算的发展受到一定的限制,而且多局限在语音、身体语言等具体而零散的研究领域,仅仅依靠这些还难以准确地推断和生成一个人的情感状态,并进行有效的情感交互。目前,科学家们正在积极地探索多特征融合的情感计算理论模型。很多人认为,今后几年情感计算将在这些方面需要取得突破:
更加细致和准确的情感信息获取、描述及参数化建模。
多模态的情感识别、理解和表达(图像、语音、生理特征等)。
自然场景对生理和行为特征的影响。
更加适用的机器学习算法。
海量的情感数据资源库。 不久前,为了推动我国在这一领域的研究,探讨情感计算和智能交互技术的发展动态与趋势,促进我国科研人员在此领域的交流与合作,中国科学院自动化研究所、中国自动化学会、中国计算机学会、中国图象图形学会、中国中文信息学会、国家自然科学基金委员会和国家863计划计算机软硬件技术主题作为主办单位,在北京主办了第一届中国情感计算与智能交互学术会议。
事实证明,情感计算的概念尽管诞生不久,但已受到学术界和产业界的高度重视,相关领域的研究和应用正方兴未艾,国家自然科学基金委也将其列入重点项目的指南中。值得注意的是,近几年来,与情感计算有密切关系的普适计算和可穿戴式计算机的研究也已获得了蓬勃发展,并同样得到了国家的大力支持。这为情感信息的实时获取提供了极大的便利条件,也为情感计算在国内的发展提供了更好的发展平台。
智能应答 Plus 是一个多模态情感分析应答平台,其主要功能是通过机器学习和自然语言处理技术,分析用户的语音和文字输入,并以自然的方式进行应答。然而,像所有的技术产品一样,智能应答 Plus 在实践中也可能会遇到各种问题。有时候,它可能会因为各种原因导致应答失败,比如说技术故障、数据丢失、网络延迟等等。当这些问题发生时,用户可能需要重新尝试或者联系技术支持团队。尽管智能应答 Plus 不是完美的,但是它仍然是一个非常有用的工具,它可以帮助人们更快、更便捷地获取想要的信息并与人类进行交流。
国际学术会议是一种学术影响度较高的会议,它具有国际性、权威性、高知识性、高互动性等特点,其参会者一般为科学家、学者、教师等。具有高学历的研究人员把它作为一种科研学术的交流方式,够为科研成果的发表和对科研学术论文的研讨提供一种途径 ;同时也能促进科研学术理论水平的提高。针对自然语言处理方向比较重要的几个会议有:ACL、EMNLP、NACAL、CoNLL、IJCNLP、CoNLL、IJCNLP、COLING、ICLR、AAAI、NLPCC等
会议链接地址: ACL
它是自然语言处理与计算语言学领域 最高级别 的学术会议,由计算语言学协会主办,每年一届。主要涉及对话(Dialogue)、篇章(Discourse)、评测( Eval)、信息抽取( IE)、信息检索( IR)、语言生成(LanguageGen)、语言资源(LanguageRes)、机器翻译(MT)、多模态(Multimodal)音韵学/ 形态学( Phon/ Morph)、自动问答(QA)、语义(Semantics)、情感(Sentiment)、语音(Speech)、统计机器学习(Stat ML)、文摘(Summarisation)、句法(Syntax)等多个方面。
ACL 成立于1962年, 每年举办一次 。这个学会主办了 NLP/CL 领域最权威的国际会议,即ACL年会。1982年和1999年,ACL分别成立了欧洲分会([EACL)和北美分会(NAACL)两个区域性分会。近年来,亚太地区在自然语言处理方面的研究进步显著,2018年7月15日,第56届ACL年会在澳大利亚墨尔本举行。开幕仪式上,ACL主席Marti Hearst正式宣布成立国际计算语言学学会亚太地区分会( AACL ,The Asia-Pacific Chapter of Association for Computational Linguistics)。此次成立ACL亚太分会,将进一步促进亚太地区NLP相关技术和研究的发展。据悉,首届AACL会议预计在2020年举行,此后将每两年举行一次。
会议链接地址: EMNLP
EMNLP涉及多个研究方向,其中包括:信息提取、信息检索和问答系统,语言和视觉,语言理论和心理语言学,机器学习,机器翻译和多语言,分割、标记和语法 分析,语义学,情感分析和观点挖掘,社交媒体和计算社交科学,口语处理,概述,生成,论述和对话,文本挖掘和自然语言分析。
EMNLP也是由ACL主办的,其中ACL学会下设多个特殊兴趣小组(Special Interest Groups ),SIGs聚集了NLP/CL不同子领域的学者,性质类似一个大学校园的兴趣社团。其中比较有名的诸如 SIGDAT(Special Interest Group on Linguistic Data & Corpus-based Approaches to Natural Language Processing)、SIGNLL(Special Interest Group on Natural Language Learning)等。这些 SIGs 也会召开一些国际学术会议,其中比较有名的就是 SIGDAT 组织的 EMNLP 和 SIGNLL 组织的 CoNLL(Conference on Computational Natural Language Learning), 均为每年举办一次 。
会议链接地址: NACAL
NACAL会议主要涉及对话,篇章,评测,信息抽取,信息检索,语言生成,语言资源,机器翻译,多模态,音韵学/ 形态学,自动问答,语义,情感,语音,统计机器学习,文摘,句法等多个方面。
NACAL是 ACL 的的北美分会,当然也是由 ACL 主办。这里把 NAACL 单独列出来是因为相比于 ACL 的欧洲分会 EACL(之前是 每三年举办一次 ,过去存在感不太强,据说从2020年开始将改为每年举办,相信会逐渐被大家重视起来),NAACL 是 每年举办一次 ,就目前而言,大家对它的认可度比 EACL 高。ACL、EMNLP、NAACL 均为每年举办一次。因为是同一学术组织举办,所以会有些有意思的潜规则。例如 ACL、EMNLP 会在各大洲轮流举办,而每当ACL在北美举办时,当年NAACL就停办一次(同理,当ACL在欧洲举办时,当年EACL就停办一次)。
会议链接地址: CoNLL
SIGDAT 组织的 EMNLP 和 SIGNLL 组织的 CoNLL( Conference on Computational Natural Language Learning),均为每年举办一次。其中CoNLL的主要涉及的方向有:对话与互动系统、信息提取、信息检索,问题回答、从认知角度研究学习方法(如机器学习、生物启发、主动学习、混合模型)、语言模型、分割、词汇语义和成分语义、语言理论与资源、用于NLP的机器学习、机器翻译、语言学中的归纳法和类比法、词法分析、词性标注和序列标注等。
会议链接地址: COLING
COLING会议主要涵盖的方向有:信息提取、信息检索和问答系统;机器学习;机器翻译;分割、标记和语法 分析;语义学;情感分析和观点挖掘;社交媒体和计算社交科 学;口语处理;对话生成;文本挖掘等。
COLING 全称 International Conference on Computational Linguistics,1965年开办,它是由老牌 NLP/CL 学术组织 ICCL(The International Committee on Computational Linguistics) 组织的, 每两年举办一次 。不过可能由于不是每年举行,感觉最近几次会议的质量起伏比较大,从认可度上也确有被EMNLP赶超的趋势。
会议链接地址: ICLR
ICLR主要发表深度学习各方面的前沿研究,其中涵盖人工智能、统计学和数据科学以及机器视觉、计算生物学、语音识别、文本理解、游戏和机器人等重要应用领域。
ICLR由Yann LeCun 和 Yoshua Bengio 等大牛发起,会议开创了公开评议机制(open review),但在今年取消了公开评议,改为双盲评审。它是一个很年轻的会议,今年举办到第6届,但已经成为深度学习领域不容忽视的重要会议,甚至有深度学习顶会“无冕之王”之称。ICLR也是世界上发展最快的人工智能会议之一,今年将有4000多名参会者。
会议链接地址: AAAI
AAAI是人工智能领域的主要学术会议,由美国人工智能促进协会主办。AAAI 成立于 1979 年,最初名为 “美国人工智能协会” (American Association for Artificial Intelligence),2007 年才正式更名为 “人工智能促进协会”(Association for the Advancement of Artificial Intelligence )。致力于促进对思维和智能行为机制及其在机器中的体现的科学理解。AAAI旨在促进人工智能的研究和负责任的使用。AAAI还旨在提高公众对人工智能的理解,改善人工智能从业者的教学和培训,并就当前人工智能发展的重要性和潜力以及未来方向为研究规划者和资助者提供指导
近年的 AAAI 会议不乏中国学者的身影,据统计 AAAI 2018 接收的 910 多篇论文中有1/3以上一作是华人名字。此外,2019 年 AAAI 程序主席是南京大学周志华教授,另一位程序主席是密歇根大学教授 Pascal Van Hentenryck。
会议链接地址: NLPCC
NLPCC主要涉及的方向有:分词和命名实体识别、句法分析、语义分析、语篇分析、面向少数民族和低资源语言的NLP、自然语言处理的应用、数字出版、文档工程、OCR和字体计算、用于移动计算的NLP、机器翻译和多语言信息访问、NLP的机器学习、Web/文本挖掘与大数据、信息检索与提取、知识表示与获取、个性化与推荐、用于搜索和广告的NLP等
作为自然语言处理和汉语计算领域的国际领先会议,NLPCC最近被CCF确认为C类会议。它为来自学术界、工业界和政府的研究人员和实践者提供了一个主要论坛,以分享他们的想法、研究成果和经验,并促进他们在该领域的研究和技术创新。NLPCC历届会议分别在北京(2012)、重庆(2013)、深圳(2014)、南昌(2015)、昆明(2016)、大连(2017)、呼和浩特(2018)、甘肃(2019)成功举办。
ACL、EMNLP、NAACL 和 COLING 可以说是 NLP 领域的四大顶会。其中 ACL、EMNLP、NAACL都是一家的(均由 ACL 举办)。ACL 、AAAI是 CCF 推荐A类国际学术会议,EMNLP 和 COLING 是B类,NAACL 、CoNLL、NLPCC则是C类。
更多自然语言处理、pytorch相关知识,还请关注 AINLPer 公众号,极品干货即刻送达。
情感分析自从2002年由Bo Pang提出之后,获得了很大程度的研究的,特别是在在线评论的情感倾向性分析上获得了很大的发展,目前基于在线评论文本的情感倾向性分析的准确率最高能达到90%以上,但是由于深层情感分析必然涉及到语义的分析,以及文本中情感转移现象的经常出现,所以基于深层语义的情感分析以及篇章级的情感分析进展一直不是很大。情感分析还存在的一个问题是尚未存在一个标准的情感测试语料库,虽然Bo Pang实验用的**评论数据集以及Theresa Wilson等建立的MPQA是目前广泛使用的两类情感分析数据集,但是并没有公认的标准加以确认。
目前研究主要集中于情感词的正面负面分类,标注语料,情感词的提取等。
高职外语教学中多模态教学互动的运用论文
伴随着经济的发展,社会对高素质应用型人才需求的不断增加,用人单位对高职毕业生的职业能力也提出了更高的要求,传统的高职外语教育模式已无法满足现阶段外语课堂的教学需要,而多模态教学互动则在课堂教学环节中通过现代信息技术的运用达到对学生听觉、视觉、触觉等多种感觉的充分调动,取得了较好的课堂教学效果,将多模态教学互动应用于高职外语教学有助于实现外语教学的有效性、有助于学生外语应用能力的提高。
一、传统教学模式与多模态教学模式
1.传统教学模式。传统教学模式是指教师在课堂上仅用一支粉笔,一块黑板,一本教材,一张嘴进行的教学活动。教师在课堂教学环节中用大量时间对教学内容进行讲解,学生则是对所学知识被动的听取。在教学过程中教师采用的教学手段单一、扮演的是教学主体的角色,学生则是知识的被动接收者。学生的主观能动性被压制不能有效地调动其自身学习的积极,性导致学习效率低下。部分知识点局限在书本,不能将其实际运用造成了“哑巴外语”这一现象。
2.多模态教学模式。多模态教学模式是指教师在教学过程中恰当、充分使用现代教育技术手段,针对不同的教学内容,灵活组合运用多种教学方法,通过语言、表情、手势、身体动作等配合板书、幻灯片、投影、媒体播放器、网络平台、语音室、同声传译室进行的教学活动。在教学过程中教师采用的教学手段多样、教学方式由以教师为中心转向为学生为中心。能有效地调动学生积极参与学习,让学生成为学习的主体,启发学生积极思维,促进学生学习实际应用能力的发展。
二、多模态教学互动的实际应用
多模态教学互动摆脱了过去单一的教学模态,对于提高高职教育教学质量起着重要作用。现结合多模态教学互动在高职日语教学中的实际应用对其有效性进行分析,从四个教学环节入手就自身如何开展高职外语日语课堂教学做一个较为详细介绍。
1.知识输入环节。本环节包括课前导入、重点单词讲解、课文内容讲解、文法讲解、句型、功能表达讲解。首先课前围绕讲授内容收集相关音频、视频、等相关资料,以直观的形式呈现在学生面前,提高学生的学习兴趣,调动学生学习的积极性。进而对相关知识点进行讲解,包括新单词,语法以及功能表达。单词采取领读或听音频等手段学习发音。词义使用等则通过大量实例讲解、练习,在这一过程中运用多媒体技术进行课堂教学,改变传统教学教学方法和教材中往往只重视词汇和语法的学习,忽视了语言实际运用的弊端。语法以及功能表达部分则通过区别、总结等方法配合大量贴近生活的实例让学生理解。在这一过程中恰当、充分地使用现代教育技术手段针对不同的教学内容,通过多模态教学互动让学生明确学习该部分的学习动机和学习策略,主动地去学习,去理解老师的讲解。有效地调动学生积极参与学习,启发学生积极思维,促进学生学习能力的发展。
2.技能提高环节。本环节包括长句记忆练习、角色扮演对话等。正如大家所知道的那样,学习一门语言的最终目的是运用。本阶段主要采用多种教学形式,融“教、学、说”为一体,培养学生的语言实际运用能力。尽可能使用直观教具或设定动作和场景,使学生通过情景和形象,逐步培养直接用日语进行思维和表达的'能力,将大量贴近实际场景的、真实的语言材料,通过模拟运用和反复练习,让学生的语言运用能力得以提高并逐步转化成学生自身的语言能力。在这一过程中多模态教学互动有助于提高学生学习兴趣和教学效果,从而真正的摆脱过去的“应试教育”,实现“素质教育”。
3.综合素质培养环节。本环节包括仿真情景模拟并点评、课后作业巩固练习等。让学生模拟交际场景,亲身体验场景交际,激发学生求知欲和表现欲。学生通过课堂讲解和自己的准备材料,进行课堂场景模拟讨论。改变“以教师的教为主”为“以学生的学为主”的方法,“以学生为中心”,让学生成为学习的主体,引导学生主动思考和解决问题。在动态教学课堂上,教师用真挚的情感去感染学生,了解学生的基础,包括学生的学习态度、学习兴趣、多数学生的学习习惯及学习方法,灵活把握教学进程,增加师生的双向交流,通过多模态教学互动使课堂氛围活跃起来,进而提高学生的学习兴趣和效果。
4.总结评价环节。在进行学习、练习、模拟之后带领学生及时进行教学反思总结。允许学生发表个性化的观点,引导学生朝着自己拟定的目标学习进步。分析学生学习过程中遇到的困难及其原因,针对这些困难加强对学生的指导例如通过场景模拟,让学生针对模拟过程中哪些表达方式不符合场景的,哪些是汉语式的交际语,哪些表达意义有遗漏等进行讨论总结。通过总结评价以达到理解日语并使用日语做事的目标。通过总结评价指导学生掌握自学方法,研究性学习、协作学习、创造性学习,让学生成为学习的主体,培养终身学习的基本素质。在整个教学过程中采取多模态教学互动,运用多样化教学方式手段,合理调整教学内容,由浅入深、循序渐进,争取少讲多练。增加实践教学内容,通过情景模拟、会话操练等多种形式,提高学生外语实际应用能力。借助课外读物、多媒体设备和网络资源,结合课堂教学和自主学习,提高学生的外语实际运用能力。
三、多模态教学互动的作用
通过多模态教学互动在教学当中的实际运用,我们逐步认识到了合理运用多模态教学互动在高职外语课堂上可以起到以下几点作用:
1.多样性的教学模态可以将相关信息传递的更加完整,避免了因单一教学模态表达不足而产生的信息点的遗漏。通过语言、表情、手势、身体动作等配合多媒体等现代信息手段营造真实语境,完整的向学生传递相关信息,使其更好的更充分的理解、体会、掌握、运用相关知识。
2.多样性的教学模态在课堂上可以更加有效地吸引学生的注意力,避免因单一教学模态而让学生产生的课堂疲劳。教师用语言和肢体动作感染学生,通过声音、视频、、教具等配合板书吸引学生、调动学生学习的积极性提高学生的课堂学习效率。
3.多模态教学互动在外语课堂的实际运用,能够更好地使课堂教学活动、教师教学行为、学生学习行为与教学目标相匹配,提高外语课堂的有效性,从而能够起到保证外语课堂教学质量的作用。
4.多模态教学互动更加注重师生之间的情感交流,能进一步改善师生关系,用教师的感召力与学生进行多模态教学互动,更好地完成外语教学进而提高教学质量。
5.多模态教学互动在外语教学过程当中通过师生之间的充分互动能更加突出教师的教学主导作用、学生的认知主体作用。教师在掌握现代教育理论的同时不拘泥于传统外语课堂教学,运用多种教学手段以及多媒体技术服务于外语课堂教学充分发挥其在教学过程中的主导作用。学生通过多模态教学互动能够充分发挥自身的主观能动性,在教师的帮助指导下,课前针对一些课文中涉及的文化、文学、政治、经济等方面的知识利用网络平台主动查询,上课过程中积极配合教师参与教学内容的互动,课后自主学习充分利用网络等资源进行完善丰富课上所学的相关知识,从而做到通过多模态教学互动发挥自身的认知主体作用。
四、结语
总之伴随科学技术的发展,非语言媒体的日益增加,为多模态教学互动提供了更多的选择,能更好地在师生之间传递先关知识信息。多模态教学互动走入高职外语课堂已经成为必然。相信通过我们共同的努力今后多模态教学互动将会更好地服务于高职外语教学。
;多模态批评话语分析属于文字学。
多模态批评话语分析是文本学、社会学、心理学、语言学等多个学科的交叉学科领域,其中包括文字学。该研究领域旨在通过结合图像、声音、手势等多种不同的传达方式,对人们在互动中表达的意图和情感进行深入的分析和解读。因此多模态批评话语分析属于文字学。
多模态批评话语分析的研究范围涵盖现代社会中的各种交流场景,如商业会谈、司法审判、医患沟通、政治演讲等等。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)