chatai与chatbot一样吗

chatai与chatbot一样吗,第1张

Chatbot和Chatai都是人工智能技术的应用,但它们有不同的特点和功能。 Chatbot通常被设计用于在文字聊天场景中与用户对话,并通过预定义的规则或脚本完成任务。另一方面,Chatai是一种更复杂的人工智能技术,可以对用户的输入作出更自然和精确的响应。Chatai可以使用深度学习技术,为人类般的意识,能够把自然语言处理、语音识别、个性化推荐、情感识别等技术融合在一起,为用户提供更加智能化的服务。总的来说,Chatai比Chatbot更加灵活和自由,并且更适用于情境更加复杂的场景。

自动驾驶车是一个轮式机器人。自动驾驶可以说是一个涉及了多个学科的综合领域,本文带你探寻自动驾驶的5大主要技术,看看这个轮式机器人的大脑、眼睛等都是如何工作的。

1、识别技术

和人类的眼睛一样,这个轮式机器人也有它自己的眼睛,用来识别周边的车辆、障碍物、行人等路上的情况。

我们眼睛的主要构成部分是眼球,通过调节晶状体的弯曲程度来改变晶状体焦距来获得实像。那自动驾驶的眼睛是由什么构成的呢?答案是传感器。包括摄像头、激光雷达、毫米波雷达,还有红外线、超声波雷达等。

你可能会惊讶,需要这么多眼睛?没错,它是长满了眼睛的小怪兽,通常拥有10+只眼睛。

其中,最常用的是摄像头,几乎是毫无争议地被所有开发者采用。它和人类的眼睛最接近,可以看清有颜色的标识、物体,看得懂字体,分得清红绿灯。但是缺点也不少,比如在夜晚或恶劣的天气下视力就严重下降,也不擅长远距离观察。

其次是颇富争议的LiDAR,即激光雷达。比较常见的是在车顶,像是顶不停旋转的帽子。原理很简单,就是通过计算激光束的反射时间和波长,可以完成绘制周边障碍物的3D图。而短板则是无法识别图像和颜色。

毫米波雷达也不得不提一提,因为它的全能--可以全天候工作,这使得它不可或缺,即便它无法识别高度,分辨率不高,也难以成像。但它凭借其穿透尘雾、雨雪的硬本领,站稳一席之地。

如此多各式各样的眼睛,那她的视力一定很好咯?那也未必。你以为星多天空亮,可它们之间能够互补还好,但也难免会产生矛盾。这么多只眼睛你要优先选择相信谁,这也是一个课题叫Sensor Fusion,传感器融合。根据每种传感器的优缺点来综合评判信息的准确度,得到更可靠的最终结果。传感器融合的另一个优点是,换来一定程度的冗余,即便某只眼睛暂时失明,也不会影响它安全前行。

2、决策技术

通过眼睛识别得到了周边环境,接下来就要充分利用这些信息进行理解分析,决定自己该如何走下一步。要完成这项任务的就是最强大脑。

跟人类的大脑一样,我们不是天生就会开车,也不是拿到驾照就成老司机了。需要一定的知识积累,自动驾驶机器人也同样需要。完成大脑中的知识库有两种方式:专家规则式和AI式。

专家规则式,英文叫rule-based。即提前编写好规则,当需要做决定的时候必须严格遵守这些规则。举个栗子,当准备超车变道时,需要满足以下条件(这是一个假专家,仅供参考):道路半径大于500R(弯道不变道);跟目标车道上的前后车的距离都在20m以上;比后车的车速慢不超过5km/h;等等等等以上N个条件同时满足时,即可超车变道。

l IAI式,就是一直很火的人工智能Artificiantelligence。模仿人类的大脑,通过AI算法对场景进行理解。或提前通过大量的犯错积累经验,或事前听某人指点江山。通过AI式积累知识库,会让她的反应更加灵活。专家也难免有疏忽,更何况交通瞬息万变,没有灵活的大脑如何应对我大中华的路况呢?

3、定位技术

只有知道自己在哪里,才知道自己去哪里。

现今,除了主流的用GPS或GNSS(全球卫星导航系统)来定位的方式之外,也有在公路上铺设电磁诱导线等方式来实现定位。高精度GPS定位目前来说最大难题是,山区和隧道等地理因素对精度的影响,虽然可以依靠IMU(惯性测量单元)来进行推算,但GPS丢失信号时间过长的话,累计的误差就会比较大。

另外,自动驾驶专用的3D动态高清地图带给了自动驾驶更多可能性。因为有了高清地图,就可以将自己的位置轻松定位在车道上。

4、通信安全技术

试想如果被黑客入侵,控制了你的自动驾驶车,不仅可以监听到你的秘密谈话,还很可能成为杀人工具。黑客可以通过影响传感器的数据而影响决策,或直接介入判断机制进而影响行驶轨道。

先了解一个术语,V2X=Vehicle To Everything。即车辆与基础设施之间所有通信的通用简称,包括车辆与车辆之间叫V2V、车辆与行人之间V2P、车辆与交通基础设施之间V2I、车辆与网络之间V2N等。

V2X包含了汽车和我们的个人信息,因此在通信的时候对用户的身份验证和给数据加密,这些都必不可少。

5、人机交互技术

虽说我们对自动驾驶的印象大多是,不需要人们的干涉,它就能把我们送到任何想去的地方。但是很遗憾,目前的自动驾驶系统还做不到这一点。

遇到自动驾驶驾驭不了的场景,便会呼唤你接替它的工作。这时,HMI(人机界面)就发挥作用了。它的目标是,用最直观最便捷的方式通知我们,让驾驶员尽快注意到。

俄罗斯科技巨头Yandex于2017年推出了移动打车服务YandexTaxi,由于去年优步在伦敦遭遇困境,Yandex开始大力发展AI技术,以保证网约车安全。

盖世汽车讯 据外媒报道,迄今为止,Yandex已经成立了二十多年,被称为俄罗斯版谷歌、亚马逊和Spotify,主要原因在于该家总部位于莫斯科的科技巨头涉足了在线搜索、音乐流媒体、电子邮件、地图、导航、视频等多个领域的业务。2011年,该公司推出了移动打车服务YandexTaxi,又成为了“俄罗斯版优步”(Uber of Russia)。2017年,YandexTaxi与优步合并了俄罗斯业务,新成立了一家合资企业,瞄准了东欧市场。

现在,除了欧洲、中东和非洲的少数几个市场外,YandexTaxi主要在独联体(CIS)内的几个国家开展业务。该公司的发展轨迹与优步类似,目前也提供了送餐服务。2018年,作为有限试点的一部分,YandexTaxi在欧洲推出了首批公共自动驾驶出租车服务之一。

不过,现在安全问题已经成为网约车服务领域的一个焦点,人们担心疲劳驾驶、驾驶员身份验证等各种问题。在去年11月,监管机构伦敦交通局(TfL)报告表示,优步的“故障模式”和违规行为,已经“将乘客和他们的安全置于危险之中”,因此吊销了优步在伦敦的执照,目前优步在等待再次上诉。

伦敦交通局发现的问题之一是,未经过背景调查的司机也可很容易使用合法优步司机的账户来接送乘客。为解决此问题,优步透露将推出面部识别技术的计划,该技术要求英国司机在开始行程前,定期验证自己的身份,与优步在美国市场的做法类似。此前,优步还曾试图将司机开车时间限制在12个小时之内,然后再强制下线休息6个小时的方式缓解人们对疲劳驾驶的担忧。

与此同时,Yandex一直在密切关注优步的进展,也一直在研发一系列技术,以避免其遭遇与该名竞争对手同样的困境。

疲劳驾驶

Yandex一直在悄悄研发由人工智能(AI)技术提供支持的专用硬软件,用于监控驾驶员的注意力水平。虽然斯巴鲁Legacy 2020等豪华新车也采用了类似的技术,不过Yandex的技术可轻松被应用于任何车型,而且该公司希望网约车司机可以利用该项技术。值得注意的是,该系统与中国网约车巨头滴滴目前正在试运行的系统类似。

Yandex表示,其SignalQ1摄像头可以观察到驾驶员脸上的68个点,在机器学习的帮助下,探测驾驶员是否疲劳或分心。为了做到这一点,该系统会观察眨眼和打哈欠等因素,并列为嗜睡和分心分数。

目前,该系统正在莫斯科的一小部分Yandex汽车上接受测试,而警报只限于哔哔声,不过,未来该摄像头会通过移动应用程序直接连接到司机的Yandex账户,意味着如果该公司认为驾驶员处于不安全状态,将能够采取预防措施。

考虑到YandexTaxi在18个国家拥有成千上万名司机,大规模部署该项技术可能会是一个巨大挑战。不过,虽然Yandex允许司机在其平台上驾驶自己的汽车,该公司也直接与大多数市场上的出租车车队合作,可能会为大规模部署该技术铺平道路。

网约车司机身份欺诈

目前,Yandex也处于研发与优步类似的面部识别系统的早期阶段,该系统能够识别真正的司机是谁。YandexTaxi欧洲、中东和非洲兼独联体国家区域总经理Aram Sargsyan表示:“该系统目前处于开发测试阶段,我们正在进行优化。”

Yandex无需特定硬件,只简单使用驾驶员智能手机上的摄像头就能识别驾驶员的面部,与优步和滴滴正在采用的做法一样。不过,Yandex正在进一步研发该技术,该公司表示,其还在测试语音识别智能技术,与具有活跃注册账户的司机进行匹配。

虽然Sargsyan没有提供有关Yandex在现有市场中司机身份欺诈现象有多普遍的细节,他表示:“我们知道有这个问题存在。”

Yandex主要担心的问题是,其所在的近20个活跃市场的监管机构可能会开始注意到该问题。从优步在伦敦遭遇的困境得到启示,该公司正在努力防止该问题进一步升级为更大的问题。

此外,Yandex还在研究其他自动化安全技术,包括一种速度控制系统。当驾驶员行驶车速过快时,该系统会通知驾驶员。据Sargsyan所说,在该系统推出后,车速下降了12倍。优步在很长一段时间以来,会一直使用远程信息处理数据监控司机在路上的行为,与优步类似,Yandex也在跟踪司机的驾驶风格,并表示可能会对表现出不稳定或攻击性驾驶行为的司机做出停驶处理。(文中均来自Yandex)

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

目前的语音技术能力主要包含了四个方面:语音唤醒、语音识别、语音理解和语音合成

语音唤醒

语音唤醒指在待机的状态下,用户说出特定指令(唤醒词)使设备进入工作状态或完成某一操作;当前更多应用于手机、可穿戴设备、车载设备、智能家居等。

1、常见两种唤醒方式:“一呼一答”和“唤醒词+命令词”;即多轮对话(一次唤醒、一个任务、多轮交互)和连续对话(一次唤醒、多个任务,无需唤醒)

2、唤醒词设计原则:易唤醒、低误唤醒 、品牌性、易记易读性

3、华为和苹果手机语言助手唤醒交互:

· 手机的语音助手都是基于特定的人识别,非用户本人无法用同样的唤醒词唤醒手机语音指令,

· 采取的唤醒方式均为“一呼一答”

· 唤醒词设计,华为的“我的荣耀”基于品牌调性,但易读性不强

· 在语音交互过程中,用问答的方式给到用户强反馈,单纯的铃声不足以引起用户触达,通常情况下用户使用语音是在不方便查看手机或者有其他干扰的情况下的。

语音识别

语音识别技术,也被称为 自动语音识别 Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。

1、语音识别包括两个阶段 :训练和识别。

训练阶段:收集大量的语音语料,经过预处理和特征提取后得到特征矢量参数,最后通过特征建模达到建立训练语音的参考模型库的目的。

识别阶段:将输入语音的特征矢量参数和参考模型库中的参考模型 进行相似性度量比较,把相似性最高的输入特征矢量作为识别结果输出。

2、语音识别对象:特定人识别(手机语音助手,设定只识别手机用户个人的声音)、非特定人识别(语音搜索,识别搜索词)。

特定人识别是指识别对象为专门的人,非特定人识别是指识别对象是针对大多数用户,一般需要采集多个人的语音进行录音和训练,经过学习,达到较高的识别率。

3、基于现有技术开发嵌入式语音交互系统,目前主要有两种方式:

一种是直接在嵌入式处理器中调用语音开发包;另一种是嵌入式处理器外围扩展语音芯片。第一种方法程序量大,计算复杂,需要占用大量的处理器资源,开发周期长;

第二种方法相对简单,只需要关注语音芯片的接口部分与微处理器相连,结构简单,搭建方便,微处理器的计算负担大大降低,增强了可靠性,缩短了开发周期。

语音理解

语义理解是指机器能够结合上下文,自然地理解用户的需求,并能给出正确以及人性化的反馈。

语音合成

语音合成是通过机械的,电子的方法产生人造语音技术。语音合成的关键点是真人音色模拟,一致性、流畅性、稳定和有情感。

语音合成,又称 文语转换(Text to Speech)技术 ,能将任意文字信息实时转化为标准流畅的语音朗读出来,相当于给机器装上了人工嘴巴。它涉及声学、语言学、 数字信号处理 、计算机科学等多个学科技术,是 中文信息处理 领域的一项前沿技术,解决的主要问题就是如何将文字信息转化为可听的声音信息,也即让机器像人一样开口说话。

TTS结构

语言处理

在文语转换系统中起着重要的作用,主要模拟人对自然语言的理解过程——文本规整、词的切分、 语法分析 和 语义分析 ,使计算机对输入的文本能完全理解,并给出后两部分所需要的各种发音提示。

韵律处理

为合成语音规划出音段特征,如音高、音长和音强等,使合成语音能正确表达语意,听起来更加自然。

声学处理

根据前两部分处理结果的要求输出语音,即合成语音。

传统的人机交互,主要通过键盘、鼠标、屏幕等方式进行,只追求便利和准确,无法理解和适应人的情绪或心境。而如果缺乏这种情感理解和表达能力,就很难指望计算机具有类似人一样的智能,也很难期望人机交互做到真正的和谐与自然。由于人类之间的沟通与交流是自然而富有感情的,因此,在人机交互的过程中,人们也很自然地期望计算机具有情感能力。情感计算(Affective Computting)就是要赋予计算机类似于人一样的观察、理解和生成各种情感特征的能力,最终使计算机像人一样能进行自然、亲切和生动的交互。 有关人类情感的深入研究,早在19世纪末就进行了。然而,除了科幻小说当中,过去极少有人将“感情”和无生命的机器联系在一起。只有到了现代,随着数字信息技术的发展,人们才开始设想让机器(计算机)也具备“感情”。从感知信号中提取情感特征,分析人的情感与各种感知信号的关联,是国际上近几年刚刚兴起的研究方向(图1)。

人的情绪与心境状态的变化总是伴随着某些生理特征或行为特征的起伏,它受到所处环境、文化背景、人的个性等一系列因素的影响。要让机器处理情感,我们首先必须探讨人与人之间的交互过程。那么人是如何表达情感,又如何精确地觉察到它们的呢?人们通过一系列的面部表情、肢体动作和语音来表达情感,又通过视觉、听觉、触觉来感知情感的变化。视觉察觉则主要通过面部表情、姿态来进行;语音、音乐则是主要的听觉途径;触觉则包括对爱抚、冲击、汗液分泌、心跳等现象的处理。

情感计算研究的重点就在于通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建感知、识别和理解人类情感的能力,并能针对用户的情感做出智能、灵敏、友好反应的个人计算系统,缩短人机之间的距离,营造真正和谐的人机环境(图2)。 在生活中,人们很难保持一种僵硬的脸部表情,通过脸部表情来体现情感是人们常用的较自然的表现方式,其情感表现区域主要包括嘴、脸颊、眼睛、眉毛和前额等。人在表达情感时,只稍许改变一下面部的局部特征(譬如皱一下眉毛),便能反映一种心态。在1972年,著名的学者Ekman提出了脸部情感的表达方法(脸部运动编码系统FACS)。通过不同编码和运动单元的组合,即可以在脸部形成复杂的表情变化,譬如幸福、愤怒、悲伤等。该成果已经被大多数研究人员所接受,并被应用在人脸表情的自动识别与合成(图3)。

随着计算机技术的飞速发展,为了满足通信的需要,人们进一步将人脸识别和合成的工作融入到通信编码中。最典型的便是MPEG4 V2视觉标准,其中定义了3个重要的参数集:人脸定义参数、人脸内插变换和人脸动画参数。表情参数中具体数值的大小代表人激动的程度,可以组合多种表情以模拟混合表情。

在目前的人脸表情处理技术中,多侧重于对三维图像的更加细致的描述和建模。通常采用复杂的纹理和较细致的图形变换算法,达到生动的情感表达效果。在此基础上,不同的算法形成了不同水平的应用系统(图4,图5) 人的姿态一般伴随着交互过程而发生变化,它们表达着一些信息。例如手势的加强通常反映一种强调的心态,身体某一部位不停地摆动,则通常具有情绪紧张的倾向。相对于语音和人脸表情变化来说,姿态变化的规律性较难获取,但由于人的姿态变化会使表述更加生动,因而人们依然对其表示了强烈的关注。

科学家针对肢体运动,专门设计了一系列运动和身体信息捕获设备,例如运动捕获仪、数据手套、智能座椅等。国外一些著名的大学和跨国公司,例如麻省理工学院、IBM等则在这些设备的基础上构筑了智能空间。同时也有人将智能座椅应用于汽车的驾座上,用于动态监测驾驶人员的情绪状态,并提出适时警告。意大利的一些科学家还通过一系列的姿态分析,对办公室的工作人员进行情感自动分析,设计出更舒适的办公环境。 在人类的交互过程中,语音是人们最直接的交流通道,人们通过语音能够明显地感受到对方的情绪变化,例如通过特殊的语气词、语调发生变化等等。在人们通电话时,虽然彼此看不到,但能从语气中感觉到对方的情绪变化。例如同样一句话“你真行”,在运用不同语气时,可以使之成为一句赞赏的话,也可以使之成为讽刺或妒忌的话。

目前,国际上对情感语音的研究主要侧重于情感的声学特征的分析这一方面。一般来说,语音中的情感特征往往通过语音韵律的变化表现出来。例如,当一个人发怒的时候,讲话的速率会变快,音量会变大,音调会变高等,同时一些音素特征(共振峰、声道截面函数等)也能反映情感的变化。中国科学院自动化研究所模式识别国家重点实验室的专家们针对语言中的焦点现象,首先提出了情感焦点生成模型。这为语音合成中情感状态的自动预测提供了依据,结合高质量的声学模型,使得情感语音合成和识别率先达到了实际应用水平。 虽然人脸、姿态和语音等均能独立地表示一定的情感,但人在相互交流的过程中却总是通过上面信息的综合表现来进行的。所以,惟有实现多通道的人机界面,才是人与计算机最为自然的交互方式,它集自然语言、语音、手语、人脸、唇读、头势、体势等多种交流通道为一体,并对这些通道信息进行编码、压缩、集成和融合,集中处理图像、音频、视频、文本等多媒体信息。

目前,多模态技术本身也正在成为人机交互的研究热点,而情感计算融合多模态处理技术,则可以实现情感的多特征融合,能够有力地提高情感计算的研究深度,并促使出现高质量、更和谐的人机交互系统。

在多模态情感计算研究中,一个很重要的研究分支就是情感机器人和情感虚拟人的研究。美国麻省理工学院、日本东京科技大学、美国卡内基·梅隆大学均在此领域做出了较好的演示系统。目前中科院自动化所模式识别国家重点实验室已将情感处理融入到了他们已有的语音和人脸的多模态交互平台中,使其结合情感语音合成、人脸建模、视位模型等一系列前沿技术,构筑了栩栩如生的情感虚拟头像,并正在积极转向嵌入式平台和游戏平台等实际应用(图6)。 情感状态的识别和理解,则是赋予计算机理解情感并做出恰如其分反应的关键步骤。这个步骤通常包括从人的情感信息中提取用于识别的特征,例如从一张笑脸中辨别出眉毛等,接着让计算机学习这些特征以便日后能够准确地识别其情感。

为了使计算机更好地完成情感识别任务,科学家已经对人类的情感状态进行了合理而清晰的分类,提出了几类基本情感。目前,在情感识别和理解的方法上运用了模式识别、人工智能、语音和图像技术的大量研究成果。例如:在情感语音的声学分析的基础上,运用线性统计方法和神经网络模型,实现了基于语音的情感识别原型;通过对面部运动区域进行编码,采用HMM等不同模型,建立了面部情感特征的识别方法;通过对人姿态和运动的分析,探索肢体运动的情感类别等等。

不过,受到情感信息的捕获技术的影响,并缺乏大规模的情感数据资源,有关多特征融合的情感理解模型的研究还有待深入。随着未来的技术进展,还将提出更有效的机器学习机制。 情感计算与智能交互技术试图在人和计算机之间建立精确的自然交互方式,将会是计算技术向人类社会全面渗透的重要手段。未来随着技术的不断突破,情感计算的应用势在必行,其对未来日常生活的影响将是方方面面的,目前我们可以预见的有:

情感计算将有效地改变过去计算机呆板的交互服务,提高人机交互的亲切性和准确性。一个拥有情感能力的计算机,能够对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们便于理解自己和他人的情感世界。

它还能帮助我们增加使用设备的安全性(例如当采用此类技术的系统探测到司机精力不集中时可以及时改变车的状态和反应)、使经验人性化、使计算机作为媒介进行学习的功能达到最佳化,并从我们身上收集反馈信息。例如,一个研究项目在汽车中用电脑来测量驾车者感受到的压力水平,以帮助解决所谓驾驶者的“道路狂暴症”问题。

情感计算和相关研究还能够给涉及电子商务领域的企业带来实惠。已经有研究显示,不同的图像可以唤起人类不同的情感。例如,蛇、蜘蛛和枪的能引起恐惧,而有大量美元现金和金块的则可以使人产生非常强烈的积极反应。如果购物网站和股票交易网站在设计时研究和考虑这些因素的意义,将对客流量的上升产生非常积极的影响。

在信息家电和智能仪器中,增加自动感知人们的情绪状态的功能,可以提供更好的服务。

在信息检索应用中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。

在远程教育平台中,情感计算技术的应用能增加教学效果。

利用多模式的情感交互技术,可以构筑更贴近人们生活的智能空间或虚拟场景等等。

情感计算还能应用在机器人、智能玩具、游戏等相关产业中,以构筑更加拟人化的风格和更加逼真的场景。 由于缺乏较大规模的情感数据资源,情感计算的发展受到一定的限制,而且多局限在语音、身体语言等具体而零散的研究领域,仅仅依靠这些还难以准确地推断和生成一个人的情感状态,并进行有效的情感交互。目前,科学家们正在积极地探索多特征融合的情感计算理论模型。很多人认为,今后几年情感计算将在这些方面需要取得突破:

更加细致和准确的情感信息获取、描述及参数化建模。

多模态的情感识别、理解和表达(图像、语音、生理特征等)。

自然场景对生理和行为特征的影响。

更加适用的机器学习算法。

海量的情感数据资源库。 不久前,为了推动我国在这一领域的研究,探讨情感计算和智能交互技术的发展动态与趋势,促进我国科研人员在此领域的交流与合作,中国科学院自动化研究所、中国自动化学会、中国计算机学会、中国图象图形学会、中国中文信息学会、国家自然科学基金委员会和国家863计划计算机软硬件技术主题作为主办单位,在北京主办了第一届中国情感计算与智能交互学术会议。

事实证明,情感计算的概念尽管诞生不久,但已受到学术界和产业界的高度重视,相关领域的研究和应用正方兴未艾,国家自然科学基金委也将其列入重点项目的指南中。值得注意的是,近几年来,与情感计算有密切关系的普适计算和可穿戴式计算机的研究也已获得了蓬勃发展,并同样得到了国家的大力支持。这为情感信息的实时获取提供了极大的便利条件,也为情感计算在国内的发展提供了更好的发展平台。

相比其他的识别技术,阿尔法鹰眼主要实现的是对人类情感的识别技术

“阿尔法鹰眼”的学名是情感人工智能反恐安防系统。它的理论基础是1914年生理学医学诺贝尔奖获得者奥地利科学家巴拉尼的“VER前庭情感反射”:人体自体原发性紧张是一种情感的表达,会通过能量的变化表现出来。巴拉尼的发现在100年后被一群来自中国人民大学、延边大学和韩国汉阳大学从事数学、计算机和电子工程研究的专家加以发挥和突破。

扩展资料

“阿尔法鹰眼”实际运用:

和人脸识别不同,“阿尔法鹰眼”是一种动态识别,可因时因地因人开展工作,还会像“阿尔法GO”一样不断学习、进步。在实际运用场景中,“阿尔法鹰眼”会通过阈值设定给出不同的安全状态,例如小于60%为安全,大于60%为危险。

当然你也可以根据需要个性化订制阈值。这样,当被检测者走过摄像安检通道的5至10秒内,“阿尔法鹰眼”就能分析出该人的安全值,如果显示安全状态阈值大于60%,意味着该人的情绪和行为异于常人,需要进行进一步安全检查。“阿尔法鹰眼”就是这样在无任何已知信息的情况下快速识别出有犯罪意图和暴力倾向的潜在危险人群。

参考资料:

扫一眼就能读懂你的心 “阿尔法鹰眼”--人民网

汽车生物识别技术的工作原理是物体在外界照明光的照射下,经成像物镜成像,形成二维光强分布的光学图像,再通过图像传感器转换成电子信号。之后,这些电子信号经图像数据处理系统的放大和同步控制处理,发送给图像显示器,便可以看到物体的二维光学图像,从而为自动驾驶汽车提供准确的驾驶环境信息。

汽车生物识别技术

生物识别技术在日常生活中的应用已经较为普遍了,比如,指纹解锁智能门锁、面部识别支付、眼球跟踪等等,如今,这些技术正在大规模地融入汽车行业,今天,我们一起来看看车辆生物识别技术。

驾驶员监控和驾驶的个性化功能推动了汽车生物识别技术的发展。车辆生物识别技术的应用,可在汽车实现便捷和安全性的前提下,让汽车的设计更为未来主义,科技感更强。首先走到车前,我们可以利用指纹,面部,虹膜或走路识别来解锁车门和后备箱。

这些设备通常被安装在车窗,车门,后视镜等地方。进入车内,我们通过指纹,面部识别或声线识别等技术来启动车辆,这些识别装备大多被安装在方向盘、驾驶员斜上方或车窗等驾驶员临近位置,从而更方便驾驶员操作。

在车辆启动的同时,生物识别座椅也将进入备用状态,驾驶员可通过语音识别功能开启,从而开始完成对驾驶员的健康监测和提供按摩等服务。与此同时,我们可以应用触摸屏来进行一系列的操作,当然,这里除了触摸,也可以使用语音和手势等来完成操作。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/849706.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-10
下一篇2023-07-10

发表评论

登录后才能评论

评论列表(0条)

    保存