相交于原点的两条数轴,构成了平面仿射坐标系。如两条数轴上的度量单位相等,则称此仿射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
仿射坐标系和笛卡尔坐标系平面向空间的推广
相交于原点的三条不共面的数轴构成空间的仿射坐标系。三条数轴上度量单位相等的仿射坐标系被称为空间笛卡尔坐标系。三条数轴互相垂直的笛卡尔坐标系被称为空间笛卡尔直角坐标系,否则被称为空间笛卡尔斜角坐标系。
笛卡尔坐标,它表示了点在空间中的位置,和直角坐标有区别,两种坐标可以相互转换。举个例子:某个点的笛卡尔坐标是493 ,454, 967,那它的X轴坐标就是4+9+3=16,Y轴坐标是4+5+4=13,Z轴坐标是9+6+7=22,因此这个点的直角坐标是(16, 13, 22),坐标值不可能为负数(因为三个自然数相加无法成为负数)。
这个应该是了
右手定则
在三维坐标系中,Z轴的正轴方向是根据右手定则确定的。右手定则也决定三维空间中任一坐标轴的正旋转方向。
要标注X、Y和Z轴的正轴方向,就将右手背对着屏幕放置,拇指即指向X轴的正方向。伸出食指和中指,食指指向Y轴的正方向,中指所指示的方向即是Z轴的正方向
这里有张图http://hibaiducom/jzd1993/blog/item/ce513934a3e09f3c5bb5f59ahtml
1619年,23岁的笛卡尔在一支德国部队服役,军营驻扎在多瑙河旁,11月的一天,他因病躺在了床上,无所事事的他默默地思考着……
20岁时,他大学毕业继承父业,当了一名律师,当时法国的社会风气是“非红即黑”。也就是说,有志之士不是致力于宗教事业就是献身于军事,笛卡尔选择了后者。军旅中一个偶然机会,他解出了数学教授别克曼的一道难题。从此成了别克曼教授的上宾,在数学的海洋中漫游,并游进了深水区。他开始看到了传统的几何过分依赖图形和形式演绎的缺陷。同时也深感代数过分受法则和公式的限制而缺乏活力。
代数与几何的各自为政、划地为牢的状况抑制了数学的发展,怎样才能摆脱这种状况,架起沟通代数与几何的桥梁呢?这个问题苦苦折磨着年轻的笛卡尔。在没有战事的军队中,他常常有时间思考它。
现在,他的思绪又回到了这个问题上……抬头望着天花板,一只小小的蜘蛛从墙角慢慢地爬过来,吐丝结网,忙个不停。从东爬到西,从南爬到北。要结一张网,小蜘蛛该走多少路啊!笛卡尔突发奇想,算一算蜘蛛走过的路程。他先把蜘蛛看成一个点,这个点离墙角多远?
离墙的两边多远?……他思考着,计算着,病中的他睡着了……梦中他继续在数学的广阔天地中驰骋,好像悟出了什么,又看到了什么,大梦醒来的笛卡尔茅塞顿开,一种新的思想初露端倪:在互相垂直的两条直线下,一个点可以用到这两条直线的距离,也就是两个数来表示,这个点的位置就被确定了。用数形结合的方式将代数与几何的桥梁联起来了。这就是解析几何学诞生的曙光,沿着这条思路前进,在众多数学家的努力下数学的历史发生了重要的转折,建立了解析几何学。
笛卡尔在五十多岁的时候爱上了瑞典的小公主,那个小公主还只有18岁,笛卡尔后来还给这个小公主写过一封情书,用情书来对小公主表白。笛卡尔的情书就成为了一个流传的故事,那么这究竟是一个怎样的浪漫的故事呢其实笛卡尔的情书要从欧洲的一场传染性疾病开始说起,欧洲地区曾经出现过有种叫做黑死病的疾病,这样的一种疾病还在瑞典出现过。就是在这个时候,笛卡尔偶遇了瑞典的小公主克里斯丁。后来,笛卡尔就成为这个公主的数学老师。他们产生了真挚的感情,但是当时的笛卡尔已经50多岁了,这段感情并没有得到瑞典的国王的认可。因此笛卡尔因为这件事情而被迫离开他的公主,离开瑞典前往法国。在离开法国之后,笛卡尔还是非常思念瑞典的小公主,他便开始给小公主写情书。但是之前的封封情书都被国王所拦截下来了。这个时候,笛卡尔就发挥出数学家的聪慧了,他给公主写了一封只有一句公式的情书。笛卡尔的情书最终还是被带给公主了,但是笛卡尔却在之后离开这个世界了。笛卡尔的哲学思想笛卡尔是一个闻名于世界的人,这个人在多个领域当中都取得了较大的成就。他不仅仅是被印在物理书上的知名人物,还是一个研究过数学和生理学的人,而最令大家惊讶的还是他竟然也是一个哲学家。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)