等差数列公式
等差数列的通项公式为:an=a1+(n-1)d 或an=am+(n-m)d 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2 若m+n=p+q则:存在am+an=ap+aq 若m+n=2p则:am+an=2ap 以上n均为正整数 文字翻译 第n项的值=首项+(项数-1)公差 前n项的和=(首项+末项)项数/2 公差=后项-前项
等差数列的通项公式为:an=a1+(n-1)d
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (n属于自然数)。
a1为首项,an为末项,n为项数,d为等差数列的公差。
等比数列 an=a1×q^(n-1);
求和:Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1)
推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
Sn =a1+ a2+ a3+ +an
Sn =an+ an-1+an-2 +a1
上下相加得Sn=(a1+an)n/2
扩展资料:
证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:
求证:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5
证明:
当n=1时,有:
1×2×3×4 = 24 = 2×3×4×5/5
假设命题在n=k时成立,于是:
1×2x3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5
则当n=k+1时有:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)
= 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)
= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)
= (k+1)(k+2)(k+3)(k+4)(k/5 +1)
= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5
即n=k+1时原等式仍然成立,归纳得证。
——数列求和
等差数列公式an=a1+(n-1)d
前n项和公式为:sn=na1+n(n-1)d/2
若公差d=1时:sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n均为正整数
等差数列前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2。
a1为首项,an为第n项的通项公式,d为公差。
前n项和公式为:Sn=na1+n(n-1)d/2,(n为正整数)。
Sn=n(a1+an)/2 注:n为正整数。
若n、m、p、q均为正整数。
若m+n=p+q时,则:存在am+an=ap+aq。
若m+n=2p时,则:am+an=2ap。
若A、B、C均为正整数,B为中项,B=(A+C)/2。
也可推导得Sn=na1+nd(n-1)/2。
等差数列及其前n项和易错点
当公差d不等于0时,an是n的一次函数,而当公差d为0时,an为常数,一共跟第几项都没有任何关系的常数。
公差d不为0的等差数列的前n项和sn是n的二次函数,且常数项为0。
如果某数列的前n项和是常数项不为0的二次函数,那么该数列一定不是等差数列。但是这个数列是从第二项开始的成等差数列的数列。
等比数列公式有数列通式an=a1q^(n-1),前n项和公式Sn=na1+n(n-1)d/2,其中a1为数列首项,d为等差公差。等差的所有公式有数列通式an=a1+(n-1)d,前n项和公式Sn=a1(1-q^n)/(1-q),其中a1为数列首项,q为数列公比。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
-等比数列
1、等差数列求和公式:(字母描述)
其中等差数列的首项为a1,末项为an,项数为n,公差为d,前n项和为Sn。
2、等差数列的通项公式:
其中等差数列的首项为a1,末项为an,项数为n,公差为d,前n项和为Sn。
3、等差数列的判定:
4、等差数列的基本性质:
扩展资料:
知识点:
等差数列基本公式:
末项=首项+(项数-1)×公差
项数=(末项-首项)÷公差+1
首项=末项-(项数-1)×公差
和=(首项+末项)×项数÷2
末项:最后一位数
首项:第一位数
项数:一共有几位数
和:求一共数的总和
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)