逻辑代数中 反函数怎么求

逻辑代数中 反函数怎么求,第1张

函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个x使得f(y)=x,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数,记为

由该定义可以很快得出函数f的定义域D和值域f(D)恰好就是反函数f-1的值域和定义域,并且f-1的反函数就是f,也就是说,函数f和f-1互为反函数,即:

扩展资料

一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。反函数y=f ^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f (y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。

参考资料:

反函数

反函数的表示方法是y=f-1(x),存在反函数(默认为单值函数)的条件是原函数必须是一一对应的,最具有代表性的反函数就是对数函数与指数函数。

相对于反函数y=f-1(x)来说,原来的函数y=f(x)称为直接函数。反函数和直接函数的图像关于直线y=x对称。若一函数有反函数,此函数便称为可逆的(invertible)。

函数其实是两个数集之间的一种对应关系,而反函数其实就是在原函数的基础上,不改变两个数集间的对应关系,只是改变对应双方的位置:原来是

x1→y1、x2→y2……现在是

y1→x1、y2→x2……

前者就是原函数,后者就是反函数——这是函数的一种表述方法:列举法。可见,反函数的

“定义域”

“值域”

与原函数进行了调换。

可以想到,不是所有函数都有原函数的。函数允许

“多对一”

的关系出现,但不允许

“一对多”。所以,所有具有反函数的函数,都是

“一一对应”

的关系。可以简单地理解为函数的

“定义域”

“值域”

中的元素个数相等,恰好能一一配对。

假设函数

y

=

f(x)

(该函数的标准记法是:f:x→y)具有反函数:ψ:y→x。那么,f

的函数图象

f

ψ

的函数图象

w

必然满足以下关系:点(x,y)在f上,当且仅当点(y,x)必然在

w

上。

显然,这两个点是关于直线

y

=

x

对称的。当对于

f

上的所有点,都可以在

w

上找到轴对称点时,f

w

本身就是轴对称的了,而事实正是如此。

最后——轴对称的两个图象,必然“一致”。

你好!总的来说,在中等数学的范围之内,所有有反函数的函数的一般求法是:原题中是用x来表示y,楼主需要做的是把它转化成用y来表示x,然后再把得到的式子里的x全替换成y,y替换成x,就得到了反函数。

但是在这个例子里面,情况稍微有些特殊。对数本来就是被设计出来成为指数函数的反函数的,所以只要两边取对数就能把x表示成y,再替换即可

[编辑本段]反函数定义 一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= f(y) 若对于y在C中的任何一个值,通过x= f(y),x在A中都有唯一的值和它对应,那么,x= f(y)就表示y是自变量,x是因变量y的函数,这样的函数x= f(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x) 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域 [编辑本段]反函数性质 (1)互为反函数的两个函数的图象关于直线y=x对称; (2)函数存在反函数的必要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a,x∈{0})。奇函数不一定存在反函数。被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数反函数存在定理。 (8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定) 例:y=2x-1的反函数是y=05x+05 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(X)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F’(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]'=1\F’(Y)。 [编辑本段]反函数说明 ⑴在函数x=f’(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f’(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式。 ⑵反函数也是函数,因为它符合函数的定义 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f‘(x),那么函数y=f’(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f‘(x)互为反函数。 ⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f‘(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f’(x)的值域;函数y=f(x)的值域正好是它的反函数y=f’(x)的定义域(如下表): 函数:y=f(x) 反函数:y=f’(x) 定义域: A C 值域: C A ⑷上述定义用“逆”映射概念可叙述为: 若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数x=f’(x)就叫做函数y=f(x)的反函数 反函数x=f‘(x)的定义域、值域分别是函数y=f(x)的值域、定义域 开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f’(t)=t/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f‘(x)=x/2-3 有时是反函数需要进行分类讨论,如:f(x)=X+1/X,需将X进行分类讨论:在X大于0时的情况,X小于0的情况,多是要注意的。一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a [编辑本段]反函数应用 直接求原函数的值域困难时,可以通过求其反函数的定义域来确定原函数的值域,求反函数的步骤是这样的: 1、先求出反函数的定义域,因为原函数的值域就是反函数的定义域; (我们知道函数的三要素是定义域、值域、对应法则,所以先求反函数的定义域是求反函数的第一步) 2、反解x,也就是用y来表示x; 3、改写,交换位置,也就是把x改成y,把y改成x; 4、写出原函数及其值域。 实例:y=2x+1(值域:任意实数) x=(y-1)/2 y=(x-1)/2(x取任意实数) 特别地,形如kx+ky=b的直线方程和任意一个反比例函数,它的反函数都是它本身。

反函数就是从函数y=f(x)中解出x,用y表示 :x=φ(y),如果对于y的每一个值,x都有唯一的值和它对应,那么x=φ(y)就是y=f(x)的反函数,习惯上,用x表示自变量,所以x=φ(y)通常写成y=φ(y) (即对换x,y的位置)。

求一个函数的反函数:

1、从原函数式子中解出 x 用 y 表示;

2、对换 x,y ;

3、标明反函数的定义域

注:反函数里的x是原函数里的y,原函数中,y≥0,所以反函数里的x≥0。在原函数和反函数中,由于交换了x、y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。

扩展资料:

反函数存在定理:

定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。

在证明这个定理之前先介绍函数的严格单调性。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。

证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。

任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。

若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。

因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。

如果f在D上严格单减,证明类似。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/jiehun/1828547.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-19
下一篇2023-07-19

发表评论

登录后才能评论

评论列表(0条)

    保存